Bending Vibrations of Rotating Nonuniform Timoshenko Beams With an Elastically Restrained Root

1994 ◽  
Vol 61 (4) ◽  
pp. 949-955 ◽  
Author(s):  
Sen Yung Lee ◽  
Shueei Muh Lin

Without considering the Coriolis force, the governing differential equations for the pure bending vibrations of a rotating nonuniform Timoshenko beam are derived. The two coupled differential equations are reduced into two complete fourth-order differential equations with variable coefficients in the flexural displacement and in the angle of rotation due to bending, respectively. The explicit relation between the flexural displacement and the angle of rotation due to bending is established. The frequency equations of the beam with a general elastically restrained root are derived and expressed in terms of the four normalized fundamental solutions of the associated governing differential equations. Consequently, if the geometric and material properties of the beam are in polynomial forms, then the exact solution for the problem can be obtained. Finally, the limiting cases are examined. The influence of the coupling effect of the rotating speed and the mass moment of inertia, the setting angle, the rotating speed and taper ratio on the natural frequencies, and the phenomenon of divergence instability (tension buckling) are investigated.

2000 ◽  
Vol 68 (6) ◽  
pp. 844-853 ◽  
Author(s):  
S. M. Lin

The governing differential equations and the boundary conditions for the coupled bending-bending-extensional vibration of a rotating nonuniform beam with arbitrary pretwist and an elastically restrained root are derived by Hamilton’s principle. The semianalytical solution procedure for an inextensional beam without taking account of the coriolis forces is derived. The coupled governing differential equations are transformed to be a vector characteristic governing equation. The frequency equation of the system is derived and expressed in terms of the transition matrix of the vector governing equation. A simple and efficient algorithm for determining the transition matrix of the general system with arbitrary pretwist is derived. The divergence in the Frobenius method does not exist in the proposed method. The frequency relations between different systems are revealed. The mechanism of instability is discovered. The influence of the rotatory inertia, the coupling effect of the rotating speed and the mass moment of inertia, the setting angle, the rotating speed and the spring constants on the natural frequencies, and the phenomenon of divergence instability are investigated.


1999 ◽  
Vol 66 (3) ◽  
pp. 742-749 ◽  
Author(s):  
S. M. Lin

A systematic solution procedure for studying the dynamic response of a rotating nonuniform Timoshenko beam with an elastically restrained root is presented. The partial differential equations are transformed into the ordinary differential equations by taking the Laplace transform. The two coupled governing differential equations are uncoupled into two complete fourth-order differential equations with variable coefficients in the flexural displacement and in the angle of rotation due to bending, respectively. The general solution and the generalized Green function of the uncoupled system are derived. They are expressed in terms of the four corresponding linearly independent homogenous solutions, respectively. The shifting relations of the four homogenous solutions of the uncoupled governing differential equation with constant coefficients are revealed. The generalized Green function of an nth order ordinary differential equation can be obtained by using the proposed method. Finally, the influence of the elastic root restraints, the setting angle, and the excitation frequency on the steady response of a beam is investigated.


2018 ◽  
pp. 44-47
Author(s):  
F.J. Тurayev

In this paper, mathematical model of nonlinear vibration problems with fluid flows through pipelines have been developed. Using the Bubnov–Galerkin method for the boundary conditions, the resulting nonlinear integro-differential equations with partial derivatives are reduced to solving systems of nonlinear ordinary integro-differential equations with both constant and variable coefficients as functions of time.A system of algebraic equations is obtained according to numerical method for the unknowns. The influence of the singularity of heredity kernels on the vibrations of structures possessing viscoelastic properties is numerically investigated.It was found that the determination of the effect of viscoelastic properties of the construction material on vibrations of the pipeline with a flowing liquid requires applying weakly singular hereditary kernels with an Abel type singularity.


Author(s):  
Mustafa Babagiray ◽  
Hamit Solmaz ◽  
Duygu İpci ◽  
Fatih Aksoy

In this study, a dynamic model of a single-cylinder four-stroke diesel engine has been created, and the crankshaft speed fluctuations have been simulated and validated. The dynamic model of the engine consists of the motion equations of the piston, conrod, and crankshaft. Conrod motion was modeled by two translational and one angular motion equations, by considering the kinetic energy resulted from the mass moment of inertia and conrod mass. Motion equations involve in-cylinder gas pressure forces, hydrodynamic and dry friction, mass inertia moments of moving parts, starter moment, and external load moment. The In-cylinder pressure profile used in the model was obtained experimentally to increase the accuracy of the model. Pressure profiles were expressed mathematically using the Fourier series. The motion equations were solved by using the Taylor series method. The solution of the mathematical model was performed by coding in the MATLAB interface. Cyclic speed fluctuations obtained from the model were compared with experimental results and found compitable. A validated model was used to analyze the effects of in-cylinder pressure, mass moment of inertia of crankshaft and connecting rod, friction, and piston mass. In experiments for 1500, 1800, 2400, and 2700 rpm engine speeds, crankshaft speed fluctuations were observed as 12.84%, 8.04%, 5.02%, and 4.44%, respectively. In simulations performed for the same speeds, crankshaft speed fluctuations were calculated as 10.45%, 7.56%, 4.49%, and 3.65%. Besides, it was observed that the speed fluctuations decreased as the average crankshaft speed value increased. In the simulation for 157.07, 188.49, 219.91, 251.32, and 282.74 rad/s crankshaft speeds, crankshaft speed fluctuations occurred at rates of 10.45%, 7.56%, 5.84%, 4.49%, and 3.65%, respectively. The effective engine power was achieved as 5.25 kW at an average crankshaft angular speed of 219.91 rad/s. The power of friction loss in the engine was determined as 0.68 kW.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fatima N. Ahmed ◽  
Rokiah Rozita Ahmad ◽  
Ummul Khair Salma Din ◽  
Mohd Salmi Md Noorani

We study the oscillatory behaviour of all solutions of first-order neutral equations with variable coefficients. The obtained results extend and improve some of the well-known results in the literature. Some examples are given to show the evidence of our new results.


2017 ◽  
Vol 63 (1) ◽  
pp. 115-132
Author(s):  
Y. Song ◽  
X. Chai

Abstract In this paper, a semi-analytical solution for free vibration differential equations of curved girders is proposed based on their mathematical properties and vibration characteristics. The solutions of in-plane vibration differential equations are classified into two cases: one only considers variable separation of non-longitudinal vibration, while the other is a synthesis method addressing both longitudinal and non-longitudinal vibration using Rayleigh’s modal assumption and variable separation method. A similar approach is employed for the out of- plane vibration, but further mathematical operations are conducted to incorporate the coupling effect of bending and twisting. In this case study, the natural frequencies of a curved girder under different boundary conditions are obtained using the two proposed methods, respectively. The results are compared with those from the finite element analysis (FEA) and results show good convergence.


Sign in / Sign up

Export Citation Format

Share Document