An On-Line Measurement Technique for Machine Volumetric Error Compensation

1993 ◽  
Vol 115 (1) ◽  
pp. 85-92 ◽  
Author(s):  
J. Ni ◽  
S. M. Wu

A hybrid on-line and off-line measurement technique is developed for machine volumetric error compensation based on a multiple-degree-of-freedom laser optical system. When implemented on a 3-axis machine up to 15 geometric error components can be measured simultaneously on-line and the remaining 6 components need to be calibrated off-line. Since the on-line measurement systems use different metrology bases, a modified volumetric error model is derived for a milling machine by considering the measurement features of the multiple-degree-of-freedom system. Through experimental tests, it was found that the discrepancy between the identified errors and the actual errors was less than 4 μm out of a maximum range of 20 μm.

2021 ◽  
Author(s):  
Kuo Liu ◽  
Yiming Cui ◽  
Zhisong Liu ◽  
Jiakun Wu ◽  
Yongqing Wang

Abstract In order to improve the poor efficiency in the measurement of the geometric error of machine tools’ linear axes, this paper has presented a method to measure and restructure the geometric error of linear axes that is based on accelerometers. This method takes advantage of the phenomenon that when acceleration is measured under different measuring speeds, different frequencies and amplitudes are produced. The measurement data of the high signal-to-noise ratio for various velocities was fused together and the straightness error of the measured axis was obtained by integrating the acceleration twice. In order to remove the trend terms error in the integration, a zero phase IIR Butterworth filter was designed, which guarantees the signal’s phase invariance after filtering. The data was continued with the AR model to eliminate the endpoints’ effect in the filtering. The proposed method was verified by numerical values and experiments. The results showed that the proposed method has better robustness, a wider bandwidth and a higher efficiency than the methods of measuring by laser interferometer. It is also able to measure the geometric error of linear axes with an accuracy that reaches the micron scale.


1993 ◽  
Author(s):  
Xin-Xiong Liu ◽  
Xiao-Lian Liu ◽  
Er-Chang Chen ◽  
Qing-Hao Yang

2020 ◽  
Vol 225 ◽  
pp. 08001
Author(s):  
M. Chebbi ◽  
D. Doizi ◽  
L. Manceron ◽  
A. Perrin ◽  
J. Vander Auwera ◽  
...  

A severe nuclear accident may induce a dramatic dissemination of radioactive species into the environment. In that respect, improving the nuclear safety remains an important challenge to improve the society acceptability towards this energy. A solution may consist on implementing robust and reliable measurement systems operating near the Containment Venting Systems (CVS). These devices should be able to provide real time monitoring of the emitted fission products (FPs) in the course of a hypothetical accidental sequence. In the present study, a peculiar attention was devoted to iodine species (namely CH3I) measurement by complementary techniques (photoacoustic spectroscopy and gas chromatography). The most important results will be described here.


2012 ◽  
Vol 472-475 ◽  
pp. 2371-2376 ◽  
Author(s):  
Jin Dong Wang ◽  
Jun Jie Guo ◽  
Yu Fen Deng ◽  
Hai Tao Li

Error compensation is an effective method to improve the machining accuracy of NC machine tool. A laser tracker is used to rapidly and accurately detect the geometric error of NC machine tool in the paper. The machine tool is controlled to move on the preset path in the space, and a laser tracker is used to measure the motion trajectory of the machine tool. Each geometric error can be identified by error separation. Based on the error model of 3-axis machine tool, error compensation can be carried out by modifying the machining process (G code). Results of experiment show that, this measurement method is feasible, and modifying the G code for error compensation is also effective.


Sign in / Sign up

Export Citation Format

Share Document