Finite Element Analysis of Engine Bore Distortions During Boring Operation

1993 ◽  
Vol 115 (4) ◽  
pp. 379-384 ◽  
Author(s):  
N. N. Kakade ◽  
J. G. Chow

Bore geometry is the major factor affecting oil comsumption, piston ring wear, and frictional losses in an engine. As such, auto industries have been constantly striving to develop better machining technologies to produce engine bores with greater precision. Experimental studies have shown that the bore distortion as a result of machining is mainly caused by temperatures and stresses created during cutting. Consequently, optimization of machining conditions so as to minimize both bore temperature gradients as well as mechanical stresses while machining should lead to the production of better bore geometry. This research develops a model aimed at simulating bore distortions caused by temperature changes and stresses generated during machining using finite element technique. The commercial finite element package ANSYS has been used along with the CAD package I-DEAS to simulate the boring process on DEC-VAX computers. The simulation procedure developed can be used to obtain a better understanding of the boring process, in particular, to determine distortion trends for different cutting conditions.

1999 ◽  
Vol 122 (3) ◽  
pp. 337-342 ◽  
Author(s):  
Y. Yao ◽  
A. Z. Qamhiyah ◽  
X. D. Fang

Hydraulic pumps and motors are widely used in mobile equipment for construction, mining and agriculture. The piston-slipper component is one of the critical parts of a hydraulic pump. A crimping process is used for connecting the piston to the slipper component. Like most of the manufacturing processes that involve large deformations, high stresses are created in the slipper and piston during the crimping process. This paper presents a finite element method for the analysis of the stresses, strains, and forces associated with the crimping process. This method can be used in the optimization of the piston, slipper and die designs. The commercial finite element package ANSYS was used to simulate the crimping process. The simulation procedure is used to obtain a better understanding of the effect of the die geometry on the crimping process. [S1050-0472(00)00303-2]


Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


Author(s):  
Graeme Roberts ◽  
T. Sriskandarajah ◽  
Gianluca Colonnelli ◽  
Arnaud Roux ◽  
Alan Roy ◽  
...  

A method of carrying out a combined axial walking and lateral buckling assessment for a flexible flowline has been developed using finite element analysis. The method overcomes limitations of screening assessments which could be inconclusive when applied either to a flexible flowline on an undulating seabed with transverse gradients or to one that buckles during hydrotest. Flexible flowlines that were to be surface-laid on a seabed with longitudinal undulations and transverse gradients were assessed using the method. The flexible flowlines were simulated in their as-laid state, and the simulation incorporated hydrotest pressure and the pressure & temperature gradients and transients associated with multiple start-ups. The objective was to quantify the axial walking and lateral slip tendency of the flexible flowlines and the impact that walking might have on the connected end structures. The lateral buckle locations predicted by finite element analysis were compared to a post-hydrotest survey and the radius of curvature from analysis was compared to the minimum bend radius of the flexible.


Author(s):  
Robbin Bertucci ◽  
Jun Liao ◽  
Lakiesha Williams

Explosions are the leading cause of death on the battlefield [1]. These explosives generate shock waves which stimulate large accelerations and deformations. The resulting loads pose serious threats to military and civilians. Since lower extremities are in direct contact with the ground, the lower extremities are commonly injured during explosions [2]. These injuries could be seriously fatal. Although experimental studies have been performed to advance these understandings [2], limited progress has been made in computational analysis of shock waves on the lower extremity.


1982 ◽  
Vol 85 (1-2) ◽  
pp. 75-89 ◽  
Author(s):  
Huanyen Loo ◽  
Huizhen Song ◽  
Caihua Guo ◽  
Jianguo Li

2009 ◽  
Vol 09 (01) ◽  
pp. 85-106
Author(s):  
N. PRASAD RAO ◽  
S. J. MOHAN ◽  
R. P. ROKADE ◽  
R. BALA GOPAL

The experimental and analytical behavior of 400 kV S/C portal-type guyed towers under different loading conditions is presented. The portal-type tower essentially consists of two masts extending outward in the transverse direction from the beam level to the ground. In addition, two sets of guys connected at the ground level project outward along the longitudinal axes and converge in the transverse axes. The experimental behavior of the guyed tower is compared with the results of finite element analysis. The 400 kV portal-type guyed towers with III and IVI type insulator strings are analyzed using finite element software. Full scale tower test results are verified through comparison with the results of the finite element analysis. The initial prestress in the guys is allowed to vary from 5% to 15% in the finite element modeling. The effect of prestress variation of the guys on the tower behavior is also studied.


Sign in / Sign up

Export Citation Format

Share Document