Stress Relief in Solder Joints Due to the Application of a Flex Circuit

1991 ◽  
Vol 113 (3) ◽  
pp. 240-243 ◽  
Author(s):  
E. Suhir

A stress analysis model is developed to assess the stresses in solder joints caused by thermal contraction mismatch between a low expansion flex-circuit (FC) and a high expansion rigid substrate. It is shown that application of low expansion FCs can result in significant stress relief for solder joints. This is due to the fact that the force acting on a joint cannot exceed the buckling force for the adjacent portion of the FC. It is shown that the strains in solder joints interconnecting FCs to rigid substrates can be made very small, thereby resulting in a substantially longer fatigue life of the interconnection. In the executed example these strains are about two orders of magnitude smaller, than in the case of a rigid board. The obtained results can be utilized as guidance in physical design of assemblies with FCs.

2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

Author(s):  
Tae-Yong Park ◽  
Hyun-Ung Oh

Abstract To overcome the theoretical limitations of Steinberg's theory for evaluating the mechanical safety of the solder joints of spaceborne electronics in a launch random vibration environment, a critical strain-based methodology was proposed and validated in a previous study. However, for the critical strain-based methodology to be used reliably in the mechanical design of spaceborne electronics, its effectiveness must be validated under various conditions of the package mounting locations and the first eigenfrequencies of a printed circuit board (PCB); achieving this validation is the primary objective of this study. For the experimental validation, PCB specimens with ball grid array packages mounted on various board locations were fabricated and exposed to a random vibration environment to assess the fatigue life of the solder joint. The effectiveness of the critical strain-based methodology was validated through a comparison of the fatigue life of the tested packages and their margin of safety, which was estimated using various analytical approaches.


Author(s):  
Tae-young Ryu ◽  
J. B. Choi ◽  
Kyoung S. Lee

For decades, the PWSCC on the penetration nozzles like BMI and CEDM nozzles are widely occurred all around the world. The PWSCC is dependent on the tensile stress condition, specific materials and chemical environment. Therefore, to evaluate the severity of the PWSCC, prediction of the welding residual stress on the J-groove welding part in the penetration nozzles is essential. Residual stress can be measured by using experimental methods like deep-hole drilling and X-ray diffraction, etc. However, the results of experimental methods are quite doubtable and these methods are hard to apply on the actual equipment. Therefore, computational approach like the FE analysis has been considered. The FE analysis results are very sensitive to the FE model density and analysis conditions. In this paper the optimized FE model for the residual stress analysis will be developed in the case of CEDM penetration nozzle. The optimized parameters contains bead number and mesh density. The bead numbers along the longitudinal and circumferential directions are considered and the mesh density in each the bead is also considered. The model will be verified by numerical error control.


2020 ◽  
Author(s):  
Hui YANG ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


Sign in / Sign up

Export Citation Format

Share Document