Effects of Ceramic Ball-Grid-Array Package’s Manufacturing Variations on Solder Joint Reliability

1994 ◽  
Vol 116 (4) ◽  
pp. 242-248 ◽  
Author(s):  
Teh-Hua Ju ◽  
Wei Lin ◽  
Y. C. Lee ◽  
Jay J. Liu

The effects of manufacturing variations on the reliability of solder joints between a ceramic ball grid array (BGA) package and a printed wiring board (PWB) are investigated. Two cases are studied, namely, with and without spacers between the BGA package and the PWB to maintain the solder joint height. Manufacturing variations considered include changes in solder volume, joint height, and pad size. To evaluate the effect of manufacturing variations on reliability, every possible solder joint profile is first derived. The maximum strain is calculated next. Finally, the fatigue life is predicted. The calculations show that these manufacturing variations change the joint profile, and subsequently affect the fatigue life. Since the package is heavy, the use of spacers is necessary to control the solder joint height for reliable connections, and to maintain a large gap for cleaning. The solder joints formed with the use of spacers, may have convex, cylindrical or concave profiles. The concave solder joints are preferred, since they have long fatigue lives and are less sensitive to the manufacturing variations. For the convex solder joints, their fatigue lives are strongly affected by the joint height variation caused by package warpage and by the combined effects of solder volume and pad size.

2006 ◽  
Vol 3 (4) ◽  
pp. 177-193 ◽  
Author(s):  
Andy Perkins ◽  
Krishna Tunga ◽  
Suresh Sitaraman

There is a need for a new Acceleration Factor (AF) that can relate Accelerated Thermal Cycle (ATC) fatigue life to Power Cycle (PC) fatigue life quickly and accurately in order to avoid over designing electronic packages for benign environments. An AF, such as the Norris-Landzberg AF, is only applicable when using it to predict fatigue life within the same environment, i.e. ATC to ATC or PC to PC. This work proposes an AF that takes into account the differences between ATC tests and PC tests for ceramic ball grid array (CBGA) packages by considering relevant design and environmental parameters. The new AF is based on relevant design parameters such as substrate size, substrate thermal conductivity, substrate thickness, coefficient of thermal (CTE) mismatch between the substrate and printed wiring board (PWB), PWB thickness, and environmental parameters such as temperature range (ΔT), frequency of cycles (f), and peak/junction temperature (Tj). Finite Element Models (FEM), experimental data, laser moiré interferometry, Design of Simulation (DOS), ANOVA, and regression analysis are used to develop the new AF. The new AF can be used to more accurately assess PC fatigue life from ATC tests so that expensive over-designing of electronic packages can be avoided for desktop/server/laptop applications.


1998 ◽  
Vol 120 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Y. Li ◽  
R. L. Mahajan ◽  
G. Subbarayan

As a follow-up and conclusion to previous work in stencil printing process modeling and optimization (Li et al., 1996), we investigate the effect of stencil printing optimization on the reliability of the ceramic and plastic ball grid arrays. For ceramic ball grid arrays, the eutectic solder fillet shape is calculated using a series of simple mathematical equations. The thermal strain distributions within the solder joints after two cycles of accelerated thermal cycling test are estimated using three-dimensional finite element models. The modified Coffin-Manson relationship is applied to calculate the mean fatigue lives of the solder joints. The results reveal that an optimized stencil printing process significantly reduces variation in the fatigue life of ceramic ball grid arrays. The results also show that the fatigue life of ceramic ball grid arrays is very sensitive to the card-side solder volume. The maximum strain region shifts from the card-side eutectic solder to the module side as the card-side eutectic solder volume increases. This shift in maximum strain suggests that there exists an optimum ratio between the card-side solder volume and the module-side solder volume for the reliability of a given ceramic ball grid array design. The implications of this for the package developers and users are discussed. The calculations indicate that the fatigue life of plastic ball grid arrays is almost insensitive to the card-side solder volume.


Author(s):  
T. E. Wong ◽  
C. Y. Lau ◽  
L. A. Kachatorian ◽  
H. S. Fenger ◽  
I. C. Chen

The objective of the present study is to evaluate the impact of electronic packaging design/manufacturing process parameters on the thermal fatigue life of ball grid array (BGA) solder joints. The four selected parameters are BGA under-fill materials, conformal coating, solder pad sizes on printed wiring board, and BGA rework, with each having either two or three levels of variation. A test vehicle (TV), on which various sizes of BGA daisy-chained packages are soldered, is first designed and fabricated, and then subjected to temperature cycling (−55°C to +125°C) with continuous monitoring of solder joint integrity. The total of 15 experimental cases is used in the present study. Based on monitored results, a destructive physical analysis is conducted to further isolate the failure locations and determine the failure mechanisms of the solder joints. Test results indicate that the influence of these design parameters on fatigue life is dependent on the particular package, in some instances improving the fatigue life tenfold.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000250-000259
Author(s):  
Jia-Shen Lan ◽  
Mei-Ling Wu

There has been a dramatic proliferation of research concerned with thermal stress in electronic package for the last three decades. Moreover, reviewing the mechanical bending during printed circuit board (PCB) assembly has become important in the reliability assessment of modern electronic systems. The primary research demonstrates that the assessment approach can be applied successfully to the design model of a ball grid array (BGA) package with a more complete and accurate assessment model for solder joint fatigue life under mechanical bending. Previous research has focused mostly on the thermal analysis in electronic packages; however, most modern portable electronic products used in mobile devices, personal digital assistants, and aircraft have to endure extreme environments that involve not only thermal but also mechanical bending conditions. Initially, mechanical bending tests were conducted to demonstrate the reliability of the electronic packaging during the manufacturing and shipping process. Currently, the microelectronic packaging faces mechanical bending when everyone uses his or her Smartphones. The mechanical bending occurs when the user touches the screen on the Smartphone. Therefore, interest in the mechanical bending of BGA packaging has increased with the uptake in mobile device use. In this research, the analytical solution and finite element analysis (FEA) are both presented to investigate the solder joint fatigue life. The analytical solution is presented for a PCB assembly subjected to mechanical bending by taking the axial stress, shear stress, and moment of the solder joints with discontinuity function into account. A FEM is proposed to analyze the solder joint fatigue life and to investigate the reliability of solder joints in BGA packaging subjected to mechanical bending.


1999 ◽  
Vol 121 (2) ◽  
pp. 61-68 ◽  
Author(s):  
R. Chandaroy ◽  
C. Basaran

In the electronic industry, the dominant failure mode for solder joints is assumed to be thermal cycling. When semiconductor devices are used in vibrating environment, such as automotive and military applications, dynamic stresses contribute to the failure mechanism of the solder joint, and can become the dominant failure mode. In this paper, a damage mechanics based unified constitutive model for Pb40/Sn60 solder joints has been developed to accurately predict the thermomechanical behavior of solder joints under concurrent thermal and dynamic loading. It is shown that simultaneous application of thermal and dynamic loads significantly shorten the fatigue life. Hence, damage induced in the solder joint by the vibrations have to be included, in fatigue life predictions to correctly predict the reliability of solder joints. The common practice of relating only thermal cycling induced inelastic strain to fatigue life can be inadequate to predict solder joint reliability. A series of parametric studies were conducted to show that contrary to popular opinion all dynamic loading induced strains are not elastic. Hence, vibrations can significantly affect the fatigue life and reliability of solder joints in spite of their small mass.


1994 ◽  
Vol 116 (2) ◽  
pp. 157-160 ◽  
Author(s):  
Vineet K. Gupta ◽  
Donald B. Barker

The local coefficient of thermal expansion (CTE) mismatch between compliant surface mount component leads and the solder that is used to attach the components to a printed wiring board can dramatically influence the thermal fatigue life of the solder joint. To quantify the contribution of the local CTE mismatch to the overall thermal fatigue damage of the solder joint, a finite element thermal fatigue simulation using an energy partitioning technique is used to compare four different lead end shapes. The four lead configurations considered are J-lead, and three gullwings leads; one with the foot parallel to the board surface, one with the foot sloped slightly downward towards the board, and one with the foot sloped slightly upward. The dimensions of the leads are purposely chosen so that the in-plane compliance is equal for the different lead shapes, only the shape of the lead end varied. Comparisons are first made with equal solder joint heights and then the solder height of the gull-wing lead is varied between 0.05 to 0.23 mm (2 to 9 mils). The influence of the solder wetting angle is also investigated.


Author(s):  
Tae-Yong Park ◽  
Hyun-Ung Oh

Abstract To overcome the theoretical limitations of Steinberg's theory for evaluating the mechanical safety of the solder joints of spaceborne electronics in a launch random vibration environment, a critical strain-based methodology was proposed and validated in a previous study. However, for the critical strain-based methodology to be used reliably in the mechanical design of spaceborne electronics, its effectiveness must be validated under various conditions of the package mounting locations and the first eigenfrequencies of a printed circuit board (PCB); achieving this validation is the primary objective of this study. For the experimental validation, PCB specimens with ball grid array packages mounted on various board locations were fabricated and exposed to a random vibration environment to assess the fatigue life of the solder joint. The effectiveness of the critical strain-based methodology was validated through a comparison of the fatigue life of the tested packages and their margin of safety, which was estimated using various analytical approaches.


Sign in / Sign up

Export Citation Format

Share Document