Combined Cycle Plants With Frame 9F Gas Turbines

1991 ◽  
Vol 113 (4) ◽  
pp. 475-481 ◽  
Author(s):  
P. Lugand ◽  
C. Parietti

The new 200 MW class MS 9001F gas turbines allow combined cycle plants to reach even higher output levels and greater efficiency ratings. Size factor and higher firing temperatures, with a three-pressure level steam reheat cycle, offer plant efficiencies in excess of 53 percent. Heat recovery steam generators have been designed to accommodate catalytic reduction elements limiting flue gas NOx emissions to as low as 10 ppm VD (15 percent O2). A range of steam turbine models covers the different possible configurations. Various arrangements based on the 350 or 650 MW power generation modules can be optimally configured to the requirements of each site.

Author(s):  
P. Lugand ◽  
C. Parietti

The new 200 MW-class MS 9001F gas turbines allow combined cycle plants to reach even higher output levels and greater efficiency ratings. Size factor and higher firing temperatures, with a 3-pressure level steam reheat cycle, offer plant efficiencies in excess of 53 %. Heat recovery steam generators have been designed to accommodate catalytic reduction elements limiting flue gas NOx emissions to as low as 10 ppm VD (15 % O2). A range of steam turbine models covers the different possible configurations. Various arrangements based on the 350 or 650 MW power generation modules can be optimally configured to the requirements of each site.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4991
Author(s):  
Zhen Wang ◽  
Liqiang Duan

The optimization of the steam parameters of the heat recovery steam generators (HRSG) of Combined Cycle Gas Turbines (CCGT) has become one of the important means to reduce the power generation cost of combined cycle units. Based on the structural theory of thermoeconomics, a thermoeconomic optimization model for a triple pressure reheat HRSG is established. Taking the minimization of the power generation cost of the combined cycle system as the optimization objective, an optimization algorithm based on three factors and six levels of orthogonal experimental samples to determine the optimal solution for the high, intermediate and low pressure steam pressures under different gas turbine (GT) operation strategies. The variation law and influencing factors of the system power generation cost with the steam pressure level under all operation strategies are analyzed. The research results show that the system power generation cost decreases as the GT load rate increases, T4 plays a dominant role in the selection of the optimal pressure level for high pressure (HP) steam and, in order to obtain the optimum power generation cost, the IGV T3-650-F mode should be adopted to keep the T4 at a high level under different GT load rates.


Author(s):  
Lothar Balling ◽  
Heinz Termuehlen ◽  
Ray Baumgartner

Even though the first installations of combined cycle power plants with heat recovery steam generators (HRSG’s) are only about forty years old, the first attempt to build gas turbines for power generation was made more than 100 years ago. It took however about 40 years before gas turbines were installed to supply peaking power.


2012 ◽  
Vol 6 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Marcio L. de Souza-Santos ◽  
Juan Villanueva Chavez

Following a preliminary study of power generation processes consuming sugar-cane bagasse; this second round indicates the possibility of almost doubling the current efficiency presently obtained in conventional mills. A combined cycle uses highly pressurized fluidized bed boiler to provide steam above critical temperature to drive steam-turbine cycle while the flue-gas is injected into gas turbines. The present round also shows that gains over usual BIG/GT (Biomass In-tegrated Gasification/Gas Turbine) are very likely mainly due to the practicality of feeding the biomass as slurry that can be pumped into the pressurized boiler chamber. Such would avoid the cumbersome cascade feeding of the fibrous bio-mass, usually required by other processes. The present stage assumes slurry with 50% added water. Future works will concentrate on thicker slurries, if those could be achieved. All studies apply a comprehensive simulator for boilers and gasifiers [CSFMB™ or CeSFaMB™] and a process simulator (IPES) to predict the main features of the steam and gas tur-bine branches.


Author(s):  
P. J. Dechamps

The last decade has seen remarkable improvement in gas turbine based power generation technologies, with the increasing use of natural gas-fuelled combined cycle units in various regions of the world. The struggle for efficiency has produced highly complex combined cycle schemes based on heat recovery steam generators with multiple pressure levels and possibly reheat. As ever, the evolution of these schemes is the result of a technico-economic balance between the improvement in performance and the increased costs resulting from a more complex system. This paper looks from the thermodynamic point of view at some simplified combined cycle schemes based on the concept of water flashing. In such systems, high pressure saturated water is taken off the high pressure drum and flashed into a tank. The vapour phase is expanded as low pressure saturated steam or returned to the heat recovery steam generator for superheating, whilst the liquid phase is recirculated through the economizer. With only one drum and three or four heat exchangers in the boiler as in single pressure level systems, the plant might have a performance similar to that of a more complex dual pressure level system. Various configurations with flash tanks are studied based on commercially available 150 MW-class E-technology gas turbines and compared with classical multiple pressure level combined cycles. Reheat units are covered, both with flash tanks and as genuine combined cycles for comparison purposes. The design implications for the heat recovery steam generator in terms of heat transfer surfaces are emphasized. Off-design considerations are also covered for the flash based schemes, as well as transient performances of these schemes, because the simplicity of the flash systems compared to normal combined cycles significantly affects the dynamic behaviour of the plant.


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo-Leyte ◽  
Martín Salazar-Pereyra ◽  
Miguel Toledo Velázquez ◽  
Helen Denise Lugo-Méndez ◽  
...  

This paper presents an exergoeconomic analysis of the combined cycle power plant Tuxpan II located in Mexico. The plant is composed of two identical modules conformed by two gas turbines generating the required work and releasing the hot exhaust gases in two heat recovery steam generators. These components generate steam at three different pressure levels, used to produce additional work in one steam turbine. The productive structure of the considered system is used to visualize the cost formation process as well as the productive interaction between their components. The exergoeconomic analysis is pursued by 1) carrying out a systematic approach, based on the Fuel-Product methodology, in each component of the system; and 2) generating a set of equations, which allows compute the exergetic and exergoeconomic costs of each flow. The thermal and exergetic efficiency of the two gas turbines delivering 278.4 MW are 35.16% and 41.90% respectively. The computed thermal efficiency of the steam cycle providing 80.96 MW is 43.79%. The combined cycle power plant generates 359.36 MW with a thermal and exergetic efficiency of 47.27% and 54.10% respectively.


Author(s):  
Sandeep Nayak ◽  
Erol Ozkirbas ◽  
Reinhard Radermacher

This paper describes the modeling of a 27 MW combined cycle cogeneration plant with 10,000 tons chilled water central cooling facility. The cogeneration plant is designed to provide heating, cooling and electricity from a single fuel source viz., natural gas, though the gas turbines do have an inbuilt dual fuel combustion system. The topping cycle of the combined cycle cogeneration plant consists of two gas turbines each producing 11 MW of electric power at full load. The energy of the exhaust gases from these gas turbines is then utilized to generate steam in two heat recovery steam generators. The heat recovery steam generators are duct fired using natural gas to meet the peak steam load. In the bottoming part of the combined cycle, the steam from the heat recovery steam generators is expanded in a backpressure steam turbine to supply steam to the campus at about 963 kPa, generating an additional 5.5 MW of electric power in this process. There is no condenser wherein the campus acts as a sink for the steam. The central cooling facility is designed to supply 10,000 tons of chilled water out of which 3800 tons is supplied by two steam driven centrifugal chillers, which utilize a part of the steam supplied to the campus and the remaining by the centrifugal electric chillers. The combined cycle cogeneration plant along with the central chilled watercooling facility is modeled in a commercially available flexible cogeneration software package. The model is built based on the design data available from design manuals of gas turbines, heat recovery steam generators, backpressure steam turbine and centrifugal chillers. A parametric study is also done on the model to study the effect of different parameters like fuel flow rate, temperature etc on the output of the turbine and efficiency of the plant. Modeling of the inlet air-cooling of the gas turbine using an absorption chiller and electric chiller is also presented. Finally the paper discusses these results.


Volume 1 ◽  
2004 ◽  
Author(s):  
Mohammad Ameri ◽  
Hamidreza Shahbaziyan ◽  
Hadi Hosseinzadeh

Heat recovery steam generators (HRSG) are widely used in industrial processes and combined cycle power plants. The quantity and the state of the produced steam depend on the flue gas temperature and its mass flow rate. Two key factors, which affect those parameters, are the ambient temperature and the load of the gas turbines. The output power of the gas turbines degrades considerably in hot days of summer. The use of the inlet air cooling system to eliminate this problem is rapidly increasing. One of the effective methods is cooling the inlet air to the compressor by Evaporative Coolers. The purpose of this paper is to study the effects of the evaporative inlet air cooling system on the performance of a heat recovery boiler in a combined cycle power plant. The heat and mass balance of a typical HRSG and its components including the superheaters, evaporators and economizers were calculated. To analyze the effects of the changes in ambient temperature and the flue gas flow, a numerical software has been used. The results have shown that using the evaporative cooler will increase the flue gas mass flow rate to the HRSG. Nevertheless, the exhaust gas temperature control system holds this temperature almost constant. Also, the results show that the produced steam temperature remains almost constant. However, the steam mass flow rate increases. Therefore the output power of the steam turbine of the combined cycle will increase. The effect of the increase in the humidity ratio is shown to be insignificant. In fact, it has negligible effect on the produced steam flow rate and the sulfuric acid dew point.


Author(s):  
Zygfryd Domachowski ◽  
Marek Dzida

Combined cycle power plants operate at thermal efficiency approaching 60 percent. In the same time their performance presents several problems that have to be addressed. E.g. gas turbines are very sensitive to backpressure exerted on them by the heat recovery steam generators as well as to ambient pressure and temperature.


Author(s):  
Anatoly Sobolevskiy ◽  
Tom Czapleski ◽  
Richard Murray

Environmental regulations are very stringent in the U.S., requiring very low emissions of nitrogen oxides (NOx) from combined cycle power plants. Selective Catalytic Reduction (SCR) systems utilizing vanadium pentoxide (V2O5) as the active material in the catalyst are a proven method of reducing NOx emissions in the exhaust stack of gas turbines with heat recovery steam generators (HRSG) to 2–4 ppmvd. These low NOx emissions levels require an increase of SCR removal efficiency to the level of 90+ % with limited ammonia slip. The distribution of flow velocities, temperature, and NOx mass flow at the inlet of the SCR are critical to minimizing NOx and ammonia (NH3) concentrations in HRSG stack. The short distance between the ammonia injection grid and the catalyst in the HRSG complicates the achievement of homogeneous NH3 and NOx mixture. To better understand the influence of the above factors on overall SCR system performance, field testing of combined cycle power plants with an SCR installed in the HRSG has been conducted. Uniformity of exhaust flow, temperature and NOx emissions upstream and downstream of the SCR were examined and the results served as a basis for SCR system tuning in order to increase its efficiency. NOx mass flow profiles upstream and downstream of the SCR were used to assess ammonia distribution enhancement. Ammonia flow adjustments within a cross section of the exhaust gas duct yielded significantly improved NOx mass flow uniformity after the SCR while reducing ammonia consumption. Based on field experience, a procedure for ammonia distribution grid tuning was developed and recommendations for SCR performance improvement were generated.


Sign in / Sign up

Export Citation Format

Share Document