scholarly journals Thermoeconomic Optimization of Steam Pressure of Heat Recovery Steam Generator in Combined Cycle Gas Turbine under Different Operation Strategies

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4991
Author(s):  
Zhen Wang ◽  
Liqiang Duan

The optimization of the steam parameters of the heat recovery steam generators (HRSG) of Combined Cycle Gas Turbines (CCGT) has become one of the important means to reduce the power generation cost of combined cycle units. Based on the structural theory of thermoeconomics, a thermoeconomic optimization model for a triple pressure reheat HRSG is established. Taking the minimization of the power generation cost of the combined cycle system as the optimization objective, an optimization algorithm based on three factors and six levels of orthogonal experimental samples to determine the optimal solution for the high, intermediate and low pressure steam pressures under different gas turbine (GT) operation strategies. The variation law and influencing factors of the system power generation cost with the steam pressure level under all operation strategies are analyzed. The research results show that the system power generation cost decreases as the GT load rate increases, T4 plays a dominant role in the selection of the optimal pressure level for high pressure (HP) steam and, in order to obtain the optimum power generation cost, the IGV T3-650-F mode should be adopted to keep the T4 at a high level under different GT load rates.

1991 ◽  
Vol 113 (4) ◽  
pp. 475-481 ◽  
Author(s):  
P. Lugand ◽  
C. Parietti

The new 200 MW class MS 9001F gas turbines allow combined cycle plants to reach even higher output levels and greater efficiency ratings. Size factor and higher firing temperatures, with a three-pressure level steam reheat cycle, offer plant efficiencies in excess of 53 percent. Heat recovery steam generators have been designed to accommodate catalytic reduction elements limiting flue gas NOx emissions to as low as 10 ppm VD (15 percent O2). A range of steam turbine models covers the different possible configurations. Various arrangements based on the 350 or 650 MW power generation modules can be optimally configured to the requirements of each site.


Author(s):  
P. Lugand ◽  
C. Parietti

The new 200 MW-class MS 9001F gas turbines allow combined cycle plants to reach even higher output levels and greater efficiency ratings. Size factor and higher firing temperatures, with a 3-pressure level steam reheat cycle, offer plant efficiencies in excess of 53 %. Heat recovery steam generators have been designed to accommodate catalytic reduction elements limiting flue gas NOx emissions to as low as 10 ppm VD (15 % O2). A range of steam turbine models covers the different possible configurations. Various arrangements based on the 350 or 650 MW power generation modules can be optimally configured to the requirements of each site.


Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


Author(s):  
James DiCampli

Combined heat and power (CHP) is an application that utilizes the exhaust heat generated from a gas turbine and converts it into a useful energy source for heating & cooling, or additional electric generation in combined cycle configurations. Compared to simple-cycle plants with no heat recovery, CHP plants emit fewer greenhouse gasses and other emissions, while generating significantly more useful energy per unit of fuel consumed. Clean plants are easier to permit, build and operate. Because of these advantages, projections show CHP capacity is expected to double and account for 24% of global electricity production by 2030. An aeroderivative power plant has distinct advantages to meet CHP needs. These include high thermal efficiency, low cost, easy installation, proven reliability, compact design for urban areas, simple operation and maintenance, fuel flexibility, and full power generation in a very short time period. There has been extensive discussion and analyses on modifying purge requirements on cycling units for faster dispatch. The National Fire Protection Association (NFPA) has required an air purge of downstream systems prior to startup to preclude potentially flammable or explosive conditions. The auto ignition temperature of natural gas fuel is around 800°F. Experience has shown that if the exhaust duct contains sufficient concentrations of captured gas fuel, and is not purged, it can ignite immediately during light off causing extensive damage to downstream equipment. The NFPA Boiler and Combustion Systems Hazards Code Committee have developed new procedures to safely provide for a fast-start capability. The change in the code was issued in the 2011 Edition of NFPA 85 and titled the Combustion Turbine Purge Credit. For a cycling plant and hot start conditions, implementation of purge credit can reduce normal start-to-load by 15–30 minutes. Part of the time saving is the reduction of the purge time itself, and the rest is faster ramp rates due to a higher initial temperature and pressure in the heat recovery steam generator (HRSG). This paper details the technical analysis and implementation of the NFPA purge credit recommendations on GE Power and Water aeroderivative gas turbines. This includes the hardware changes, triple block and double vent valve system (or drain for liquid fuels), and software changes that include monitoring and alarms managed by the control system.


Author(s):  
P. J. Dechamps

The last decade has seen remarkable improvement in gas turbine based power generation technologies, with the increasing use of natural gas-fuelled combined cycle units in various regions of the world. The struggle for efficiency has produced highly complex combined cycle schemes based on heat recovery steam generators with multiple pressure levels and possibly reheat. As ever, the evolution of these schemes is the result of a technico-economic balance between the improvement in performance and the increased costs resulting from a more complex system. This paper looks from the thermodynamic point of view at some simplified combined cycle schemes based on the concept of water flashing. In such systems, high pressure saturated water is taken off the high pressure drum and flashed into a tank. The vapour phase is expanded as low pressure saturated steam or returned to the heat recovery steam generator for superheating, whilst the liquid phase is recirculated through the economizer. With only one drum and three or four heat exchangers in the boiler as in single pressure level systems, the plant might have a performance similar to that of a more complex dual pressure level system. Various configurations with flash tanks are studied based on commercially available 150 MW-class E-technology gas turbines and compared with classical multiple pressure level combined cycles. Reheat units are covered, both with flash tanks and as genuine combined cycles for comparison purposes. The design implications for the heat recovery steam generator in terms of heat transfer surfaces are emphasized. Off-design considerations are also covered for the flash based schemes, as well as transient performances of these schemes, because the simplicity of the flash systems compared to normal combined cycles significantly affects the dynamic behaviour of the plant.


Author(s):  
M. Huth ◽  
A. Heilos ◽  
G. Gaio ◽  
J. Karg

The Integrated Gasification Combined Cycle concept is an emerging technology that enables an efficient and clean use of coal as well as residuals in power generation. After several years of development and demonstration operation, now the technology has reached the status for commercial operation. SIEMENS is engaged in 3 IGCC plants in Europe which are currently in operation. Each of these plants has specific characteristics leading to a wide range of experiences in development and operation of IGCC gas turbines fired with low to medium LHV syngases. The worlds first IGCC plant of commercial size at Buggenum/Netherlands (Demkolec) has already demonstrated that IGCC is a very efficient power generation technology for a great variety of coals and with a great potential for future commercial market penetration. The end of the demonstration period of the Buggenum IGCC plant and the start of its commercial operation has been dated on January 1, 1998. After optimisations during the demonstration period the gas turbine is running with good performance and high availability and has exceeded 18000 hours of operation on coal gas. The air-side fully integrated Buggenum plant, equipped with a Siemens V94.2 gas turbine, has been the first field test for the Siemens syngas combustion concept, which enables operation with very low NOx emission levels between 120–600 g/MWh NOx corresponding to 6–30 ppm(v) (15%O2) and less than 5 ppm(v) CO at baseload. During early commissioning the syngas nozzle has been recognised as the most important part with strong impact on combustion behaviour. Consequently the burner design has been adjusted to enable quick and easy changes of the important syngas nozzle. This design feature enables fast and efficient optimisations of the combustion performance and the possibility for easy adjustments to different syngases with a large variation in composition and LHV. During several test runs the gas turbine proved the required degree of flexibility and the capability to handle transient operation conditions during emergency cases. The fully air-side integrated IGCC plant at Puertollano/Spain (Elcogas), using the advanced Siemens V94.3 gas turbine (enhanced efficiency), is now running successfully on coal gas. The coal gas composition at this plant is similar to the Buggenum example. The emission performance is comparable to Buggenum with its very low emission levels. Currently the gas turbine is running for the requirements of final optimization runs of the gasifier unit. The third IGCC plant (ISAB) equipped with Siemens gas turbine technology is located at Priolo near Siracusa at Sicilly/Italy. Two Siemens V94.2K (modified compressor) gas turbines are part of this “air side non-integrated” IGCC plant. The feedstock of the gasification process is a refinery residue (asphalt). The LHV is almost twice compared to the Buggenum or Puertollano case. For operation with this gas, the coal gas burner design was adjusted and extensively tested. IGCC operation without air extraction has been made possible by modifying the compressor, giving enhanced surge margins. Commissioning on syngas for the first of the two gas turbines started in mid of August 1999 and was almost finished at the end of August 1999. The second machine followed at the end of October 1999. Since this both machines are released for operation on syngas up to baseload.


Author(s):  
Tadashi Tsuji

Air cooling blades are usually applied to gas turbines as a basic specification. This blade cooling air is almost 20% of compressor suction air and it means that a great deal of compression load is not converted effectively to turbine power generation. This paper proposes the CCM (Cascade Cooling Module) system of turbine blade air line and the consequent improvement of power generation, which is achieved by the reduction of cooling air consumption with effective use of recovered heat. With this technology, current gas turbines (TIT: turbine inlet temperature: 1350°C) can be up-rated to have a relative high efficiency increase. The increase ratio has a potential to be equivalent to that of 1500°C Class GT/CC against 1350°C Class. The CCM system is designed to enable the reduction of blade cooling air consumption by the low air temperature of 15°C instead of the usual 200–400°C. It causes the turbine operating air to increase at the constant suction air condition, which results in the enhancement of power and thermal efficiency. The CCM is installed in the cooling air line and is composed of three stage coolers: steam generator/fuel preheater stage, heat exchanger stage for hot water supplying and cooler stage with chilled water. The coolant (chilled water) for downstream cooler is produced by an absorption refrigerator operated by the hot water of the upstream heat exchanger. The proposed CCM system requires the modification of cooling air flow network in the gas turbine but produces the direct effect on performance enhancement. When the CCM system is applied to a 700MW Class CC (Combined Cycle) plant (GT TIT: 135°C Class), it is expected that there will be a 40–80MW increase in power and +2–5% relative increase in thermal efficiency.


Author(s):  
S. Can Gülen

Duct firing in the heat recovery steam generator (HRSG) of a gas turbine combined cycle power plant is a commonly used method to increase output on hot summer days when gas turbine airflow and power output lapse significantly. The aim is to generate maximum possible power output when it is most needed (and, thus, more profitable) at the expense of power plant heat rate. In this paper, using fundamental thermodynamic arguments and detailed heat and mass balance simulations, it will be shown that, under certain boundary conditions, duct firing in the HRSG can be a facilitator of efficiency improvement as well. When combined with highly-efficient aeroderivative gas turbines with high cycle pressure ratios and concomitantly low exhaust temperatures, duct firing can be utilized for small but efficient combined cycle power plant designs as well as more efficient hot-day power augmentation. This opens the door to efficient and agile fossil fuel-fired power generation opportunities to support variable renewable generation.


2005 ◽  
Vol 127 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Michael A. Bartlett ◽  
Mats O. Westermark

Humidified Gas Turbine (HGT) cycles are a group of advanced gas turbine cycles that use water-air mixtures as the working media. In this article, three known HGT configurations are examined in the context of short-term realization for small to midsized power generation: the Steam Injected Gas Turbine, the Full-flow Evaporative Gas Turbine, and the Part-flow Evaporative Gas Turbine. The heat recovery characteristics and performance potential of these three cycles are assessed, with and without intercooling, and a preliminary economic analysis is carried out for the most promising cycles.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012009
Author(s):  
Jiangpeng Li ◽  
Ziti Liu ◽  
Ruoxuan Ye

Abstract The gas turbine is widely used in various fields, including powering aircraft, ships, trains, and electrical generators. This paper reviews multiple researches about two usages of gas turbines, including power generation and propulsion in aerospace. To be specific, two types of gas turbines have been considered in the power generation section. The first one is the micro-scale turbine, and its working principle has been introduced in section 2.1.1. In addition, six diverse kinds of gas turbines, sorted by a different manufacturer, are introduced in 2.1.2, and it has been found out that, compared to its counterpart, EnerTwin is obviously more sustainable. At the same time, both of them generally cost the same. The second type of gas turbine is used in a combined cycle power plant (CCPP), a popular power station. The working principle of CCPP is introduced in 2.2.1, while several optimization methods are illustrated in 2.2.2, including solar thermal power methods and other novel methods. The result indicates that the most popular method of optimizing the combined cycle gas turbine is integrating an additional unit. One of those outstanding technics is the integrated solar-combined cycle, contributing to 64% of fuel saving with 2.8% of output reduction.


Sign in / Sign up

Export Citation Format

Share Document