scholarly journals Model Tests of Load Transmission Through Grounded Ice Rubble

1990 ◽  
Vol 112 (2) ◽  
pp. 171-176 ◽  
Author(s):  
G. W. Timco ◽  
M. Sayed ◽  
R. M. W. Frederking

A model test series has been performed to look at the load distribution through newly formed grounded ice rubble. In the tests, a section of a vertical-sided Arctic structure was built above a submerged berm. Both the structure and the berm were instrumented independently of one another so that the load apportioning through the rubble to the berm and structure could be determined. The results have important implications in the design loads of Arctic structures built on submerged berms.

Author(s):  
Oliver Lorkowski ◽  
Hendrik Dankowski ◽  
Florian Kluwe

Current damage stability rules for ships are based on the evaluation of a ship’s residual stability in the final flooding stage. The consideration of the dynamic propagation of water within the inner subdivision as well as intermediate flooding stages and their influence on the resulting stability is very limited in the current damage stability regulations. The investigation of accidents like the one of the Estonia or the European Gateway reveals that intermediate stages of flooding and the dynamic flooding sequence result in significant fluid shifting moments which have a major influence on the time-dependent stability of damaged ships. Consequently, the critical intermediate stages should be considered when evaluating designs with large cargo decks like RoRo vessels, RoPax vessels and car carriers. Also the safety of large passenger ships with respect to damage stability is affected by the aforementioned effects. In this context a new numerical flooding simulation tool has been developed which allows an evaluation of a ship’s time-dependent damage stability including all intermediate stages of flooding. The simulation model is based on a quasi-static approach in the time domain with a hydraulic model for the fluxes to ease the computation and allow for fast and efficient evaluation within the early design stage of the vessel. This allows studying multiple damage scenarios within a short period. For the further validation of this numerical simulation method a series of model tests has been particularly set up to analyse the time-dependent damage stability of a floating body. The test-body has been designed specifically to reflect the most typical internal subdivision layouts of ships affected by the effects mentioned above. The experimental study covers a static model test series as well a dynamic one. The static model test series has been set up with the aim to analyse the progressive flooding of selected compartments in calm water. Within the dynamic model test series, the model is excited by a roll motion oscillator to evaluate the influence of the ship motion on the water propagation and the associated damage stability. The model tests presented in this paper comprise side leaks in typical compartments which are used for a basic validation of the simulation toll and the measurement devices. Particular attention has been drawn on damage scenarios with critical intermediate flooding stages in consequence of restricted water propagation. The presented results enable a further validation of the numerical flooding simulation and give an insight view on the chosen experimental setup.


Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


Author(s):  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jin Wang

Wind power has great potential because of its clean and renewable production compared to the traditional power. Most of the present researches for floating wind turbine rely on the hydro-aero-elastic-servo simulation codes and have not been exhaustively validated yet. Thus, model tests are needed and make sense for its high credibility to master the kinetic characters of floating offshore structures. The characters of kinetic responses of the spar-type wind turbine are investigated through model test research technique. This paper describes the methodology for wind/wave model test that carried out at Deepwater Offshore Basin in Shanghai Jiao Tong University at a scale of 1:50. A Spar-type floater was selected to support the wind turbine in this test and the model blade was geometrically scaled down from the original NREL 5 MW reference wind turbine blade. The detail of the scaled model of wind turbine and the floating supporter, the test set-up configuration, the mooring system, the high-quality wind generator that can create required homogeneous and low turbulence wind, and the instrumentations to capture loads, accelerations and 6 DOF motions are described in detail, respectively. The isolated wind/wave effects and the integrated wind-wave effects on the floating wind turbine are analyzed, according to the test results.


2011 ◽  
Vol 335-336 ◽  
pp. 222-225
Author(s):  
Rong Jun Chen ◽  
Chao Zhang ◽  
Yan Feng Tian ◽  
Juan Guo
Keyword(s):  

It has studied the subsidence characteristics of the geogrid-reinforced and pile-supported foundation through eleven loading model tests, and analyzed the effects that varied pile spacing, reinforced floors, the paving position of the reinforcement, underlayer thickness have had on the subsidence of the geogrid-reinforced and pile-supported foundation.


Author(s):  
Mehernosh Irani ◽  
Lyle Finn

An extensive model test program was conducted to explore the effectiveness of alternate strake designs to reduce Truss Spar VIV response. Different strake configurations were tested to minimize VIV response. The paper presents results of the model tests. The model test set-up is described, important parameters that are modeled (including hull and truss geometry, strake configuration, mass and mooring properties) and considerations of instrumentation and test methodology are discussed. The paper also describes the analysis of the test results and shows the effectiveness of new strake design. The present results are compared with VIV response of existing Truss Spars with conventional strake design.


Author(s):  
Bas Buchner ◽  
Pieter Dierx ◽  
Olaf Waals

For future offshore LNG terminals tugs are planned to assist LNG carriers during berthing and offloading operations. A model test study was carried out to better understand the tug behaviour in waves and to make a first step in the quantification of the related weather limits. Scale 1:35 model tests were performed in the two important ‘modes’ of a tug during this type of operation: the ‘push’ mode and the ‘pull’ mode. Realistic weather conditions were used and the tugs were working at the unshielded and shielded sides of the LNG carrier. Based on the results presented in this paper, it can be concluded that the motions of tugs in waves are significant, even in wave conditions that are considered to be mild for the berthing and offloading LNG carriers. The resulting push or pull loads may hamper these tug operations significantly. Special measures are necessary to take this behaviour into account in tug design, LNG carrier design and development of operational procedures and equipment. The paper gives insight in the typical tug behaviour in different weather conditions. One should be careful, however, to generalize the present results: with an optimised tug design and operation the tugs can be used in more severe conditions.


Author(s):  
Anton Kisjes ◽  
Frans Quadvlieg ◽  
Victor Ferrari

Abstract This paper presents an uncertainty study on the manoeuvring behaviour of a twin screw ferry. In particular, we are interested in heel angles that this ship achieves while manoeuvring. Earlier published uncertainty analysis has focused on the uncertainty of overshoot angles and tactical diameters see [1] and [2]. The heel angles of these ships are not large. However, there is a class of ships that may encounter large heel angles due to steering. Ferries are such ships. The present paper quantifies also the uncertainty of the measured heel angles due to manoeuvres. During the model test series, results are obtained for various values of the stability (GM), where large heel angles are observed. This provides a unique insight in the relation between the GM, approach speed, directional stability and the achieved heel angles. Because of the demonstrated large heel angles, it was important to make an uncertainty analysis of these tests. More publications have been written on the uncertainty of overshoot angles and dimensions of turning circle manoeuvres. However, the uncertainty of heel angles during manoeuvres hasn’t been published yet, which makes this a unique paper. The uncertainty analysis will be based on repeat tests for the zigzag 10°/10° and 35° turning circle manoeuvres. Repeat tests are carried out for these manoeuvres to verify the mean and the uncertainty of the experimentally obtained values. The methodology for estimating the uncertainty with 95% confidence bounds are derived by accounting for 1) uncertainty from measurement, 2) repeat tests and 3) the uncertainty from propagation of initial conditions and the error in check angle and rudder. The uncertainty results are compared with a previous study of uncertainty of manoeuvring characteristics of model tests with the KVLCC2 [1] and [2].


2018 ◽  
Vol 37 (2) ◽  
pp. 142-148
Author(s):  
Fan Pengxian ◽  
Wang Jiabo ◽  
Shi Yehui ◽  
Wang Derong ◽  
Tan Jinzhong ◽  
...  

Analogue materials are widely used to simulate prototype rocks in geo-mechanical model tests. The large amounts of solid waste generated by a large-scale model test has always posed problems for studies. The re-use of analogue materials can significantly reduce the cost of geo-mechanical model tests and the resulting environmental problems. However, despite the environmental and economic benefits, there have been few reports on the re-use of analogue materials. In this work, a recycling method for a resin-based analogue material is studied experimentally. More than 300 samples were prepared and tested. By adding a certain amount of resin in solution form to the recycled material, regenerated samples with properties consistent with those of the samples prior to recycling were obtained. Based on a comparative analysis of the test data, an equation is proposed for the calculation of the appropriate amount of resin addition in the recycling process. Thus, a simple and effective recycling method is established for a resin-based analogue material. Verification was performed by independent tests on three group samples with different proportions, and the possibility of repeated recycling was also confirmed. The proposed recycling method makes the cyclic utilization of resin-based analogue material possible and is helpful for reducing the cost and pollution of geo-mechanical model tests.


2019 ◽  
Vol 7 (3) ◽  
pp. 60 ◽  
Author(s):  
Marcel van Gent ◽  
Ermano de Almeida ◽  
Bas Hofland

Physical model tests were performed in a wave flume at Deltares with rock armoured slopes. A shallow foreshore was present. At deep water, the same wave conditions were used, but by applying different water levels, the wave loading on the rock armoured slopes increased considerably with increasing water levels. This allowed an assessment of the effects of sea level rise. Damage was measured by using digital stereo photography (DSP), which provides information on each individual stone that is displaced. Two test series were performed five times. This allowed for a statistical analysis of the damage to rock armoured slopes, which is uncommon due to the absence of statistical information based on a systematic repetition of test series. The statistical analysis demonstrates the need for taking the mean damage into account in the design of rock armoured slopes. This is important in addition to characterising the damage itself by erosion areas and erosion depths. The relation between damage parameters, such as the erosion area and erosion depth, was obtained from the tests. Besides tests with a straight slope, tests with a berm in the seaward slopes were also performed. A new method to take the so-called length effect into account is proposed to extrapolate results from physical model tests to real structures. This length effect is important, but is normally overlooked in the design of rubble mound structures. Standard deviations based on the presented model tests were used.


Author(s):  
P Trägärdh ◽  
P Lindell ◽  
N Sasaki

The acronym DAT stands for double acting tanker, a concept where the ship is designed to run astern in heavy ice conditions while remaining hydrodynamically efficient for ahead propulsion in open water conditions. Two large aframax DATs - 106.000 dwt (deadweight tons) each - have been delivered by Sumitomo Heavy Industries to Fortum Oil and Gas OY. They are the first crude carriers built according to the DAT principle and also the first using pod propulsion from the beginning (Fig. 1). They will also be the world's largest crude carriers with ice class 1A super and are primarily intended for year-round transportation of North Sea crude to Fortum's refineries in the Gulf of Finland. The ships were appointed ‘ship of the year’ in Japan in 2003. SSPA was contracted by Sumitomo Heavy Industries to perform model tests. A comprehensive open water model test programme was used to investigate aspects of resistance and propulsion, manoeuvring, and cavitation performance. As the ship is designed to operate both in ahead and astern conditions for prolonged periods of time, most tests were performed both ahead and astern. Also, a simulation study of dynamic positioning at buoy or floating production, storage offshore (FPSO) loading was made by SSPA. Comprehensive tests of the ship's performance in ice were performed in the ice tank at MARC (Masa-Yards Artic Research Centre). The eight-month model testing and development campaign resulted in a ship with excellent propulsion and manoeuvring performance, especially with regard to the high ice class. Sea trials carried out with ship in August 2002 confirmed the results of the model test. Interesting experiences of the model test campaign and comparison between model test and sea trial results are presented, as well as some examples of single-point mooring simulations.


Sign in / Sign up

Export Citation Format

Share Document