Traction in Thermal Elastohydrodynamic Lubrication of Rough Surfaces

1992 ◽  
Vol 114 (1) ◽  
pp. 186-191 ◽  
Author(s):  
L. Chang

This paper studies the traction behavior of elastohydrodynamically lubricated line contacts between two rough surfaces. The study uses a thermal micro-elastohydrodynamic-lubrication (micro-EHL) model and obtains traction coefficients for a wide range of operating conditions and for film parameters as small as 1.50. The simulation results suggest that the traction is generally insensitive to the roughness structure and magnitude as long as the contact maintains a full EHL film. The results also indicate clearly that the lubricant squeeze induced by the motion and interaction of rough surfaces significantly affects the numerical solutions to thermal micro-elastohydrodynamic lubrication.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Dong Zhu ◽  
Jiaxu Wang ◽  
Q. Jane Wang

The “Stribeck curve” is a well-known concept, describing the frictional behavior of a lubricated interface during the transition from boundary and mixed lubrication up to full-film hydrodynamic/elastohydrodynamic lubrication. It can be found in nearly every tribology textbook/handbook and many articles and technical papers. However, the majority of the published Stribeck curves are only conceptual without real data from either experiments or numerical solutions. The limited number of published ones with real data is often incomplete, covering only a portion of the entire transition. This is because generating a complete Stribeck curve requires experimental or numerical results in an extremely wide range of operating conditions, which has been a great challenge. Also, numerically calculating a Stribeck curve requires a unified model with robust algorithms that is capable of handling the entire spectrum of lubrication status. In the present study, numerical solutions in counterformal contacts of rough surfaces are obtained by using the unified deterministic mixed elastohydrodynamic lubrication (EHL) model recently developed. Stribeck curves are plotted in a wide range of speed and lubricant film thickness based on the simulation results with various types of contact geometry using machined rough surfaces of different orientations. Surface flash temperature is also analyzed during the friction calculation considering the mutual dependence between friction and interfacial temperature. Obtained results show that in lubricated concentrated contacts, friction continuously decreases as speed and film thickness increase even in the full-film regime until extremely high speeds are reached. This is mainly due to the reduction of lubricant limiting shear stress caused by flash temperature rise. The results also reveal that contact ellipticity and roughness orientation have limited influence on frictional behaviors, especially in the full-film and boundary lubrication regimes.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Punit Kumar ◽  
M. M. Khonsari

This paper investigates the traction behavior in heavily loaded thermo-elastohydrodynamic lubrication (EHL) line contacts using the Doolittle free-volume equation, which closely represents the experimental viscosity-pressure-temperature relationship and has recently gained attention in the field of EHL, along with Tait’s equation of state for compressibility. The well-established Carreau viscosity model has been used to describe the simple shear-thinning encountered in EHL. The simulation results have been used to develop an approximate equation for traction coefficient as a function of operating conditions and material properties. This equation successfully captures the decreasing trend with increasing slide to roll ratio caused by the thermal effect. The traction-slip characteristics are expected to be influenced by the limiting shear stress and pressure dependence of lubricant thermal conductivity, which need to be incorporated in the future.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Wei Pu ◽  
Jiaxu Wang ◽  
Dong Zhu

Numerical solution of mixed elastohydrodynamic lubrication (EHL) is of great importance for the study of lubrication formation and breakdown, as well as surface failures of mechanical components. However, converged and accurate numerical solutions become more difficult, and solution process with a fixed single discretization mesh for the solution domain appears to be quite slow, especially when the lubricant films and surface contacts coexist with real-machined roughness involved. Also, the effect of computational mesh density is found to be more significant if the average film thickness is small. In the present study, a set of sample cases with and without machined surface roughness are analyzed through the progressive mesh densification (PMD) method, and the obtained results are compared with those from the direct iteration method with a single fixed mesh. Besides, more numerical analyses with and without surface roughness in a wide range of operating conditions are conducted to investigate the influence of different compound modes in order to optimize the PMD procedure. In addition, different initial conditions are used to study the effect of initial value on the behaviors of this transient solution. It is observed that, no matter with or without surface roughness considered, the PMD method is stable for transient mixed EHL problems and capable of significantly accelerating the EHL solution process while ensuring numerical accuracy.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


1981 ◽  
Vol 103 (2) ◽  
pp. 218-225 ◽  
Author(s):  
E. M. Sparrow ◽  
S. Acharya

A conjugate conduction-convection analysis has been made for a vertical plate fin which exchanges heat with its fluid environment by natural convection. The analysis is based on a first-principles approach whereby the heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum, and energy in the fluid boundary layer adjacent to the fin. The natural convection heat transfer coefficient is not specified in advance but is one of the results of the numerical solutions. For a wide range of operating conditions, the local heat transfer coefficients were found not to decrease monotonically in the flow direction, as is usual. Rather, the coefficient decreased at first, attained a minimum, and then increased with increasing downstream distance. This behavior was attributed to an enhanced buoyancy resulting from an increase in the wall-to-fluid temperature difference along the streamwise direction. To supplement the first-principles analysis, results were also obtained from a simple adaptation of the conventional fin model.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
Xiaoling Liu ◽  
Jinlei Cui ◽  
Peiran Yang

In order to investigate the size effect on elastohydrodynamic lubrication (EHL) of roller pairs, complete numerical solutions for both the Newtonian fluid and the Eyring fluid thermal EHL problems of roller pairs under steady state conditions have been achieved. It can be seen that there is no size effect on the isothermal EHL performance; however, there is a very strong size effect on the thermal EHL performance. Results show that the term of shearing heat is the most important factor for the film temperature when the size of a contact changes. Comparison between the Newtonian solution and the Eyring solution has been made under some operating conditions. It is interesting to see that the effective viscosity of the Eyring fluid is nearly the same as that of the Newtonian fluid when the size of a contact is large enough. The non-Newtonian effect, therefore, can be ignored when the size of a contact is very large. It is equally interesting to see that the thermal effect can be ignored when the size of a contact is very small. In addition, the influence of the velocity parameter, the load parameter, and the slide-roll ratio on the lubricating performance for various sizes of contacts has been investigated.


1998 ◽  
Vol 120 (2) ◽  
pp. 267-274 ◽  
Author(s):  
N. Sivashankar ◽  
A. G. Ulsoy

This paper describes a method for vehicle yaw rate estimation using two accelerometers and a steer angle sensor. This yaw rate estimate can be used as an inexpensive alternative to commercial yaw rate sensors in vehicle control applications. The proposed method combines two complementary approaches to yaw rate estimation using accelerometers. This new method is superior to either method used by itself. This paper presents the new approach, supporting analyses, simulation results and experimental validation. The simulation results are based upon both linear and nonlinear vehicle dynamics models and include important effects such as sensor drift and noise, disturbances acting on the vehicle, and model uncertainties. The experimental validation is based on test data from a specially instrumented vehicle driven on a test track. These results indicate that the proposed yaw rate estimation scheme performs well for a wide range of operating conditions and is not difficult to implement.


2018 ◽  
Vol 30 (3) ◽  
pp. 427-457 ◽  
Author(s):  
N. E. COURTIER ◽  
J. M. FOSTER ◽  
S. E. J. O'KANE ◽  
A. B. WALKER ◽  
G. RICHARDSON

Increasing evidence suggests that the presence of mobile ions in perovskite solar cells (PSCs) can cause a current–voltage curve hysteresis. Steady state and transient current–voltage characteristics of a planar metal halide CH3NH3PbI3PSC are analysed with a drift-diffusion model that accounts for both charge transport and ion vacancy motion. The high ion vacancy density within the perovskite layer gives rise to narrow Debye layers (typical width ~2 nm), adjacent to the interfaces with the transport layers, over which large drops in the electric potential occur and in which significant charge is stored. Large disparities between (I) the width of the Debye layers and that of the perovskite layer (~600 nm) and (II) the ion vacancy density and the charge carrier densities motivate an asymptotic approach to solving the model, while the stiffness of the equations renders standard solution methods unreliable. We derive a simplifiedsurface polarisationmodel in which the slow ion dynamics are replaced by interfacial (non-linear) capacitances at the perovskite interfaces. Favourable comparison is made between the results of the asymptotic approach and numerical solutions for a realistic cell over a wide range of operating conditions of practical interest.


AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1241-1259
Author(s):  
Lei Liu ◽  
◽  
Takeyoshi Kato ◽  
Paras Mandal ◽  
Alexey Mikhaylov ◽  
...  

<abstract><p>This work presents a load frequency control scheme in Renewable Energy Sources(RESs) power system by applying Model Predictive Control(MPC). The MPC is designed depending on the first model parameter and then investigate its performance on the second model to confirm its robustness and effectiveness over a wide range of operating conditions. The first model is 100% RESs system with Photovoltaic generation(PV), wind generation(WG), fuel cell, seawater electrolyzer, and storage battery. From the simulation results of the first case, it shows the control scheme is efficiency. And base on the good results of the first case study, to propose a second case using a 10-bus power system of Okinawa island, Japan, to verify the efficiency of proposed MPC control scheme again. In addition, in the second case, there also applied storage devices, demand-response technique and RESs output control to compensate the system frequency balance. Last, there have a detailed results analysis to compare the two cases simulation results, and then to Prospects for future research. All the simulations of this work are performed in Matlab®/Simulink®.</p></abstract>


Author(s):  
C J Hooke

The elastohydrodynamic lubrication of point contacts is examined and results for the minimum film thickness are presented for a wide range of radius ratios and operating conditions. The results are compared with the predictions of the appropriate regime formulae. Although these formulae give a reasonable estimate of the contact's behaviour, the actual clearances are often substantially different, particularly close to the regime boundaries. Interpolation equations for seven values of radius ratio are given and these should be sufficient to allow the minimum clearance to be estimated for most isoviscous point contacts.


Sign in / Sign up

Export Citation Format

Share Document