Experimental Pressures and Film Forces in a Squeeze Film Damper

1993 ◽  
Vol 115 (1) ◽  
pp. 134-140 ◽  
Author(s):  
G. L. Arauz ◽  
L. A. San Andres

The effect of whirl frequency and lubricant viscosity on the dynamic pressures and force response of an open end and a partially sealed squeeze film dampers (SFD) with a radial clearance of 0.38 mm is determined experimentally. The experiments are carried out in a damper test rig executing circular centered orbits and for whirl frequencies ranging from 33 to 83 Hz. The experimental results show that the sealed SFD configuration produces larger tangential forces than the open end SFD. The tangential (damping) force increases linearly with increasing whirl frequency. For this radial clearance fluid inertia effects in the damper are found to be negligible since the squeeze film Reynolds number is less than 1.20. Cavitation was observed in both damper configurations at high frequencies and high lubricant viscosities. This condition limited the rate of increment of the damping (tangential) force with increasing frequency and reduced the radial force when lubricant viscosity increased.

1987 ◽  
Vol 109 (1) ◽  
pp. 164-168 ◽  
Author(s):  
Chiao-Ping Ku ◽  
John A. Tichy

The one-dimensional squeeze film damper is modeled for high speed flow by using the two-equation (k-ε) turbulent transport model. The assumption is made that the fluid flow at each local region of the squeeze film damper has similar behavior to inertialess flow in a channel at comparable Reynolds number. Using the k-ε model, the inertialess channel flow case is solved. Based on this result, correlations are obtained for the mean velocity, inertia and viscous terms of the integrated momentum equation for the squeeze film damper. It is found that turbulence increases the magnitude of the fluid pressure and the tangential force, while fluid inertia causes a shift on the pressure creating a significant radial force. In applications, turbulence may be a beneficial effect, increasing the principal damping force; while inertia may be detrimental increasing the cross-coupling forces.


Author(s):  
J. W. Lund ◽  
A. J. Smalley ◽  
J. A. Tecza ◽  
J. F. Walton

Squeeze-film dampers are commonly used in gas turbine engines and have been applied successfully in a great many new designs, and also as retrofits to older engines. Of the mechanical components in gas turbines, squeeze-film dampers are the least understood. Their behavior is nonlinear and strongly coupled to the dynamics of the rotor systems on which they are installed. The design of these dampers is still largely empirical, although they have been the subject of a large number of past investigations. To describe recent analytical and experimental work in squeeze-film damper technology, two papers are planned. This abstract outlines the first paper, Part 1, which concerns itself with squeeze-film damper analysis. This paper will describe an analysis method and boundary conditions which have been developed recently for modelling dampers, and in particular, will cover the treatment of finite length, feed and drain holes and fluid inertia effects, the latter having been shown recently to be of great importance in predicting rotor system behavior. A computer program that solves the Reynolds equation for the above conditions will be described and sample calculation results presented.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Sina Hamzehlouia ◽  
Kamran Behdinan

This work represents a pressure distribution model for finite length squeeze film dampers (SFDs) executing small amplitude circular-centered orbits (CCOs) with application in high-speed turbomachinery design. The proposed pressure distribution model only accounts for unsteady (temporal) inertia terms, since based on order of magnitude analysis, for small amplitude motions of the journal center, the effect of convective inertia is negligible relative to unsteady (temporal) inertia. In this work, the continuity equation and the momentum transport equations for incompressible lubricants are reduced by assuming that the shapes of the fluid velocity profiles are not strongly influenced by the inertia forces, obtaining an extended form of Reynolds equation for the hydrodynamic pressure distribution that accounts for fluid inertia effects. Furthermore, a numerical procedure is represented to discretize the model equations by applying finite difference approximation (FDA) and to numerically determine the pressure distribution and fluid film reaction forces in SFDs with significant accuracy. Finally, the proposed model is incorporated into a simulation model and the results are compared against existing SFD models. Based on the simulation results, the pressure distribution and fluid film reaction forces are significantly influenced by fluid inertia effects even at small and moderate Reynolds numbers.


Author(s):  
Luis San Andrés ◽  
Sung-Hwa Jeung

Squeeze film dampers (SFDs) are common in aircraft gas turbine engines, customized to provide a desired level of damping while also ensuring structural isolation. This paper presents measurements obtained in a test rig composed of a massive cartridge, an elastic structure, and an open-ends SFD with length L = 25.4 mm, diameter D = 127 mm, and radial clearance c = 0.267 mm. ISO VG 2 oil at room temperature lubricates the thin film. The measurements quantify the system transient response to sudden loads for motions departing from various static eccentricity displacements, es/c = 0–0.6. The batch of tests include recording the system response to (a) one single impact, (b) two (and three) impacts with an elapsed time of 30 ms in between, and (c) two or more consecutive impacts, without any delay, each with a load magnitude at 50% of the preceding impact. The load actions intend to reproduce, for example, a hard landing on an uneven surface or plunging motions from sudden contacts in a machine tool. The test system transient responses due to one or more impacts, each 30 ms apart, show the peak amplitude of motion (ZMAX) is proportional to the magnitude of applied load (FMAX). The identified system damping ratio (ξ) is proportional to the peak dynamic displacement as a linear system would show. Predictions of transient response from a physical SFD model accounting for fluid inertia correlate best with the experimental results as they produce greatly reduced peak dynamic motions when compared to predictions from a purely viscous SFD model. For the responses due to consecutive impacts, one after the other with no delay, the system motion does not decay immediately but builds to produce larger motion amplitudes than in the earlier cases. Eventually, as expected, after several oscillations, the system comes to rest. For an identical damper having a smaller clearance cs = 0.213 mm (0.8c), its damping ratio (ξs) is ∼1.3 to ∼1.7 times greater than the damping ratio for the damper with a larger film clearance (ξ). Hence, the experimentally derived (ξs/ξ) scales with (c/cs)2. The finding demonstrates the importance of manufacturing precisely the components in a damper to produce an accurate clearance.


1986 ◽  
Vol 108 (2) ◽  
pp. 332-339 ◽  
Author(s):  
L. San Andre´s ◽  
J. M. Vance

The effects of fluid inertia and turbulence on the force coefficients of squeeze film dampers are investigated analytically. Both the convective and the temporal terms are included in the analysis of inertia effects. The analysis of turbulence is based on friction coefficients currently found in the literature for Poiseuille flow. The effect of fluid inertia on the magnitude of the radial direct inertia coefficient (i.e., to produce an apparent “added mass” at small eccentricity ratios, due to the temporal terms) is found to be completely reversed at large eccentricity ratios. The reversal is due entirely to the inclusion of the convective inertia terms in the analysis. Turbulence is found to produce a large effect on the direct damping coefficient at high eccentricity ratios. For the long or sealed squeeze film damper at high eccentricity ratios, the damping prediction with turbulence included is an order of magnitude higher than the laminar solution.


Author(s):  
L. A. San Andres ◽  
G. Meng ◽  
S. Yoon

The effects of whirl frequency and lubricant viscosity on the experimental pressure field and film forces in an open ended squeeze film damper test rig are presented. The measurements refer to circular centered journal motion of amplitude equal to one half the damper clearance (ε=0.5). The whirl frequency varied between 16Hz to 85Hz, while the lubricant temperature increased from 25°C to 45°C. The damper operated with levels of external pressurization which supressed lubricant cavitation. The experimental results show conclusivey that the radial film force is purely an inertial effect, i.e. it depends solely on the fluid density and the second power of the whirl frequency. The tangential film force shows a variation which depends on the viscous and inertial flow conditions in the squeeze film region. Correlation of experimental forces with conventional SFD models shows the radial force to be π times larger than the theoretical prediction, while the tangential force correlates well for low whirl frequencies and large lubricant viscosities.


Author(s):  
G. Meng ◽  
L. A. San Andres ◽  
J. M. Vance

Abstract The influence of rotational speed, oil temperature and supply pressure on the squeeze film pressure and fluid forces is investigated experimentally for a partially sealed squeeze film damper (SFD) test rig executing circular centered orbits. Experimental Tesults show that the sealed damper produces higher damping forces than an open end SFD, though it is more prone to produce oil cavitation. As a result, the peak-to-peak pressures and the tangential force (damping force) decrease with increasing rotational speed; while, the radial force (stiffhening force) becomes negative due to the large extent of the cavitation zone. The tangential force decreases and the radial force increases with increasing lubricant temperature. The squeeze film pressure and film force increase as the supply pressure rises. The film cavitation onset is determined by the level of supply pressure and rotational speed.


Author(s):  
John A. Tichy

Fluid inertia forces are comparable to viscous forces in squeeze film dampers in the range of many practical applications. This statement appears to contradict the commonly held view in hydrodynamic lubrication that inertia effects are small. Upon closer inspection, the latter is true for predominantly sliding (rather than squeezing) flow bearings. The basic equations of hydrodynamic lubrication flow are developed, including the inertia terms. The appropriate orders of magnitude of the viscous and inertia terms are evaluated and compared, for journal bearings and for squeeze film dampers. Exact equations for various limiting cases are presented: low eccentricity, high and low Reynolds number. The asymptotic behavior is surprisingly similar in all cases. Due to inertia, the damper force may shift 90° forward from its purely viscous location. Inertia forces are evaluated for typical damper conditions. The effect of turbulence in squeeze film dampers is also discussed. On physical grounds it is argued that the transition occurs at much higher Reynolds numbers than the usual lubrication turbulence models predict.


Author(s):  
Luis San Andrés ◽  
Sung-Hwa Jeung

Squeeze Film Dampers (SFDs) are common in aircraft gas turbine engines, customized to provide a desired level of damping while also ensuring structural isolation. This paper presents measurements obtained in a test rig composed of a massive cartridge, an elastic structure, and an open ends SFD with length L=25.4 mm, diameter D=127 mm, and radial clearance c=0.267 mm. ISO VG 2 oil at room temperature lubricates the thin film. The measurements quantify the system transient response to sudden loads for motions departing from various static eccentricity displacements, es/c=0 to 0.6. The batch of tests include recording the system response to (a) one single impact, (b) two (and three) impacts with an elapsed time of 30 ms in between, and (c) two or more consecutive impacts, without any delay, each with a load magnitude at 50% of the preceding impact. The load actions intend to reproduce, for example, a hard landing on an uneven surface or plunging motions from sudden contacts in a machine tool. The test system transient responses due to one or more impacts, each 30 ms apart, show the peak amplitude of motion (ZMAX) is proportional to the magnitude of applied load (FMAX). The identified system damping ratio (ξ) is proportional to the peak dynamic displacement as a linear system would show. Predictions of transient response from a physical SFD model accounting for fluid inertia correlate best with the experimental results as they produce greatly reduced peak dynamic motions when compared to predictions from a purely viscous SFD model. For the responses due to consecutive impacts, one after the other with no delay, the system motion does not decay immediately but builds to produce larger motion amplitudes than in the earlier cases. Eventually, as expected, after several oscillations the system comes to rest. For an identical damper having a smaller clearance cs=0.213 mm (0.8c), its damping ratio (ξs) is ∼1.3 to ∼1.7 times greater than the damping ratio for the damper with a larger film clearance (ξ). Hence, the experimentally derived (ξs/ξ) scales with (c/cs)2. The finding demonstrates the importance of manufacturing precisely the components in a damper to produce an accurate clearance.


1993 ◽  
Vol 115 (2) ◽  
pp. 341-346 ◽  
Author(s):  
L. A. San Andres ◽  
G. Meng ◽  
S. Yoon

The effects of whirl frequency and lubricant viscosity on the experimental pressure field and film forces in an open-ended squeeze film damper test rig are presented. The measurements refer to circular centered journal motion of amplitude equal to one half the damper clearance (ε = 0.5). The whirl frequency varied between 16 Hz and 85 Hz, while the lubricant temperature increased from 25°C to 45°C. The damper operated with levels of external pressurization that supressed lubricant cavitation. The experimental results show conclusively that the radial film force is purely an inertial effect, i.e., it depends solely on the fluid density and the second power of the whirl frequency. The tangential film force shows a variation that depends on the viscous and inertial flow conditions in the squeeze film region. Correlation of experimental forces with conventional SFD models shows the radial force to be π times larger than the theoretical prediction, while the tangential force correlates well for low whirl frequencies and large lubricant viscosities.


Sign in / Sign up

Export Citation Format

Share Document