scholarly journals Navier–Stokes Analysis of Turbine Blade Heat Transfer

1991 ◽  
Vol 113 (3) ◽  
pp. 392-403 ◽  
Author(s):  
R. J. Boyle

Comparisons with experimental heat transfer and surface pressures were made for seven turbine vane and blade geometries using a quasi-three-dimensional thin-layer Navier–Stokes analysis. Comparisons are made for cases with both separated and unseparated flow over a range of Reynolds numbers and free-stream turbulence intensities. The analysis used a modified Baldwin-Lomax turbulent eddy viscosity model. Modifications were made to account for the effects of: (1) free-stream turbulence on both transition and leading edge heat transfer; (2) strong favorable pressure gradients on relaminarizations; and (3) variable turbulent Prandtl number on heat transfer. In addition, the effect on heat transfer of the near-wall model of Deissler is compared with the Van Driest model.

Author(s):  
R. J. Boyle

Comparisons with experimental heat transfer and surface pressures were made for seven turbine vane and blade geometries using a quasi-three-dimensional thin-layer Navier-Stokes analysis. Comparisons are made for cases with both separated and unseparated flow over a range of Reynolds numbers and freestream turbulence intensities. The analysis used a modified Baldwin-Lomax turbulent eddy viscosity model. Modifications were made to account for the effects of: 1) freestream turbulence on both transition and leading edge heat transfer; 2) strong favorable pressure gradients on re-laminarization; and 3) variable turbulent Prandtl number on heat transfer. In addition, the effect on heat transfer of the near-wall model of Deissler is compared with the Van Driest model.


1987 ◽  
Vol 109 (1) ◽  
pp. 10-15 ◽  
Author(s):  
G. J. VanFossen ◽  
R. J. Simoneau

A study has been conducted at the NASA Lewis Research Center to investigate the mechanism that causes free-stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades. The work was conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size was scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13,000 to 177,000 were run in the present tests. Spanwise averaged heat transfer measurements with high and low turbulence have been made with “rough” and smooth surface stagnation regions. Results of these measurements show that, at the Reynolds numbers tested, the boundary layer remained laminar in character even in the presence of free-stream turbulence. If roughness was added the boundary layer became transitional as evidenced by the heat transfer increase with increasing distance from the stagnation line. Hot-wire measurements near the stagnation region downstream of an array of parallel wires has shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region. Finally smoke wire flow visualization and liquid crystal surface heat transfer visualization were combined to show that, in the wake of an array of parallel wires, heat transfer was a minimum in the wire wakes where the fluctuating component of velocity (local turbulence) was the highest. Heat transfer was found to be the highest between pairs of vortices where the induced velocity was toward the cylinder surface.


1985 ◽  
Vol 107 (4) ◽  
pp. 1016-1021 ◽  
Author(s):  
C. Camci ◽  
T. Arts

This paper describes an experimental heat transfer investigation around the leading edge of a high-pressure film-cooled gas turbine rotor blade. The measurements were performed in the VKI isentropic compression tube facility using platinum thin film gauges painted on a blade made of machinable glass ceramic. Free-stream to wall temperature ratio, Reynolds, and Mach numbers were selected from actual aeroengines conditions. Heat transfer data obtained without and with film cooling in a stationary frame are presented. The effects of coolant to free-stream mass weight ratio and temperature ratio were successively investigated. Heat transfer modifications due to incidence angle variations were interpreted with the aid of inviscid flow calculation methods.


Author(s):  
G. James VanFossen ◽  
Robert J. Simoneau

A study is being conducted at the NASA Lewis Research Center to investigate the mechanism that causes free stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades. The work is being conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size is scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13 000 to 177 000 were run in the present tests. Spanwise averaged heat transfer measurements with high and low turbulence have been made with “rough” and smooth surface stagnation regions. Results of these measurements show that the boundary layer remains laminar in character even in the presence of free stream turbulence at the Reynolds numbers tested. If roughness is added the boundary layer becomes transitional as evidenced by the heat transfer increase with increasing distance from the stagnation line. Hot wire measurements near the stagnation region downstream of an array of parallel wires has shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region. Circumferential traverses of a hot wire probe very near the surface of the cylinder have shown the fluctuating component of velocity changes in character depending on free stream turbulence and Reynolds number. Finally smoke wire flow visualization and liquid crystal surface heat transfer visualization have been combined to show that, in the wake of an array of parallel wires, heat transfer is a minimum in the wire wakes where the fluctuating component of velocity (local turbulence) was the highest. Heat transfer was found to be the highest between pairs of vortices where the induced velocity is toward the cylinder surface.


Author(s):  
Vijay K. Garg

A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox’s k-ω model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and ω distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.


2011 ◽  
Vol 669 ◽  
pp. 64-89 ◽  
Author(s):  
JAN G. WISSINK ◽  
WOLFGANG RODI

The effect of an incoming wake on the flow around and heat transfer from the stagnation region of a circular cylinder was studied using direct numerical simulations (DNSs). Four simulations were carried out at a Reynolds number (based on free-stream velocity and cylinder diameterD) ofReD= 13200: one two-dimensional (baseline) simulation and three three-dimensional simulations. The three-dimensional simulations comprised a baseline simulation with a uniform incoming velocity field, a simulation in which realistic wake data – generated in a separate precursor DNS – were introduced at the inflow plane and, finally, a simulation in which the turbulent fluctuations were removed from the incoming wake in order to study the effect of the mean velocity deficit on the heat transfer in the stagnation region. In the simulation with realistic wake data, the incoming wake still exhibited the characteristic meandering behaviour of a near-wake. When approaching the regions immediately above and below the stagnation line of the cylinder, the vortical structures from the wake were found to be significantly stretched by the strongly accelerating wall-parallel (circumferential) flow into elongated vortex tubes that became increasingly aligned with the direction of flow. As the elongated streamwise vortical structures impinge on the stagnation region, on one side they transport cool fluid towards the heated cylinder, while on the other side hot fluid is transported away from the cylinder towards the free stream, thereby increasing the heat transfer. The DNS results are compared with various semi-empirical correlations for predicting the augmentation of heat transfer due to free-stream turbulence.


Author(s):  
Andrew P. S. Wheeler ◽  
Richard D. Sandberg

In this paper we use direct numerical simulation to investigate the unsteady flow over a model turbine blade-tip at engine scale Reynolds and Mach numbers. The DNS is performed with a new in-house multi-block structured compressible Navier-Stokes solver purposely developed for exploiting high-performance computing systems. The particular case of a transonic tip flow is studied since previous work has suggested compressibility has an important influence on the turbulent nature of the separation bubble at the inlet to the gap and subsequent flow reattachment. The effects of free-stream turbulence, cross-flow and pressure-side boundary-layer on the tip flow aerodynamics and heat transfer are investigated. For ‘clean’ in-flow cases we find that even at engine scale Reynolds numbers the tip flow is intermittent in nature (neither laminar nor fully turbulent). The breakdown to turbulence occurs through the development of spanwise modes with wavelengths around 25% of the gap height. Cross-flows of 25% of the streamwise gap exit velocity are found to increase the stability of the tip flow, and to significantly reduce the turbulence production in the separation bubble. This is predicted through in-house linear stability analysis, and confirmed by the DNS. For the case when the inlet flow has free-stream turbulence, viscous dissipation and the rapid acceleration of the flow at the inlet to the tip-gap causes significant distortion of the vorticity field and reductions of turbulence intensity as the flow enters the tip gap. This means that only very high turbulence levels at the inlet to the computational domain significantly affect the tip heat transfer. The DNS results are compared with RANS predictions using the Spalart-Allmaras and k–ω SST turbulence models. The RANS and DNS predictions give similar qualitative features for the tip flow, but the size and shape of the inlet separation bubble and shock positions differ noticeably. The RANS predictions are particularly insensitive to free-stream turbulence.


Author(s):  
Ting Wang ◽  
Matthew C. Rice

The surface roughness over a serviced turbine airfoil is usually multi-scaled with varying features that are difficult to be universally characterized. However, it was previously discovered in low freestream turbulence conditions that the height of larger roughness produces separation and vortex shedding, which trigger early transition and exert a dominant effect on flow pattern and heat transfer. The geometry of the roughness and smaller roughness scales played secondary roles. This paper extends the previous study to elevated turbulence conditions with free-stream turbulence intensity ranging from 0.2–6.0 percent. A simplified test condition on a flat plate is conducted with two discrete regions having different surface roughness. The leading edge roughness is comprised of a sandpaper strip or a single cylinder. The downstream surface is either smooth or covered with sandpaper of grit sizes ranging from 100 ∼ 40 (Ra = 37 ∼ 119 μm). Hot wire measurements are conducted in the boundary layer to study the flow structure. The results of this study verify that the height of the largest-scale roughness triggers an earlier transition even under elevated turbulence conditions and exerts a more dominant effect on flow and heat transfer than does the geometry of the roughness. Heat transfer enhancements of about 30 ∼ 40 percent over the entire test surface are observed. The vortical motion, generated by the backward facing step at the joint of two roughness regions, is believed to significantly increase momentum transport across the boundary layer and bring the elevated turbulence from the freestream towards the wall. No such long-lasting heat transfer phenomenon is observed in low FSTI cases even though vortex shedding also exists in the low turbulence cases. The heat transfer enhancement decreases, instead of increases, as the downstream roughness height increases.


Author(s):  
Robert Pearce ◽  
Peter Ireland ◽  
Ed Dane ◽  
Janendra Telisinghe

Leading edge impingement systems are increasingly being used for high pressure turbine blades in gas turbine engines, in regions where very high heat loads are encountered. The flow structure in such systems can be very complex and high resolution experimental data is required for engine-realistic systems to enable code validation and optimal design. This paper presents spatially resolved heat transfer distributions for an engine-realistic impingement system for multiple different hole geometries, with jet Reynolds numbers in the range of 13,000–22,000. Following this, Reynolds-averaged Navier-Stokes computational fluid dynamics simulations are compared to the experimental data. The experimental results show variation in heat transfer distributions for different geometries, however average levels are primarily dependent on jet Reynolds number. The computational simulations match the shape of the distributions well however with a consistent over-prediction of around 10% in heat transfer levels.


Sign in / Sign up

Export Citation Format

Share Document