scholarly journals A Robotic System for Real-Time Tumor Manipulation During Image Guided Breast Biopsy

2008 ◽  
Vol 2 (2) ◽  
Author(s):  
Vishnu G. Mallapragada ◽  
Nilanjan Sarkar ◽  
Tarun K. Podder

Breast biopsy guided by imaging techniques is widely used to evaluate suspicious masses within the breast. Current procedure allows the physician to determine location and extent of a tumor in the patient breast before inserting the needle. There are several problems with this procedure: Complex interaction dynamics between needle and breast tissue will likely displace the tumor from its original position necessitating multiple insertions, causing surgeons’ fatigue, patient’s discomfort, and compromising integrity of the tissue specimen. We present a new concept for real-time manipulation of a tumor using a robotic system that monitors the image of the tumor to generate appropriate external force to position the tumor at a desired location. The objective is to demonstrate that it is possible to manipulate a tumor in real-time by applying controlled external force in an automated way such that the tumor does not deviate from the path of the needle. We have demonstrated efficacy of this approach on breast phantoms. The robotic system consists of an ultrasound probe for image acquisition, a guiding mechanism for automatic probe orientation, image processing algorithm for extracting tumor position and PID (proportional-integral-derivative) controlled actuators for tumor manipulation. We have successfully tested this system for accessing mobile lesions during multiple needle insertion trials. This approach has the potential to reduce the number of attempts a surgeon makes to capture the desired tissue specimen, minimize tissue damage, improve speed of biopsy, and reduce patient discomfort.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5279
Author(s):  
Dong-Hoon Kwak ◽  
Guk-Jin Son ◽  
Mi-Kyung Park ◽  
Young-Duk Kim

The consumption of seaweed is increasing year by year worldwide. Therefore, the foreign object inspection of seaweed is becoming increasingly important. Seaweed is mixed with various materials such as laver and sargassum fusiforme. So it has various colors even in the same seaweed. In addition, the surface is uneven and greasy, causing diffuse reflections frequently. For these reasons, it is difficult to detect foreign objects in seaweed, so the accuracy of conventional foreign object detectors used in real manufacturing sites is less than 80%. Supporting real-time inspection should also be considered when inspecting foreign objects. Since seaweed requires mass production, rapid inspection is essential. However, hyperspectral imaging techniques are generally not suitable for high-speed inspection. In this study, we overcome this limitation by using dimensionality reduction and using simplified operations. For accuracy improvement, the proposed algorithm is carried out in 2 stages. Firstly, the subtraction method is used to clearly distinguish seaweed and conveyor belts, and also detect some relatively easy to detect foreign objects. Secondly, a standardization inspection is performed based on the result of the subtraction method. During this process, the proposed scheme adopts simplified and burdenless calculations such as subtraction, division, and one-by-one matching, which achieves both accuracy and low latency performance. In the experiment to evaluate the performance, 60 normal seaweeds and 60 seaweeds containing foreign objects were used, and the accuracy of the proposed algorithm is 95%. Finally, by implementing the proposed algorithm as a foreign object detection platform, it was confirmed that real-time operation in rapid inspection was possible, and the possibility of deployment in real manufacturing sites was confirmed.


2021 ◽  
Author(s):  
Nilesh Umakant Deshpande ◽  
Mishika Virmani ◽  
Manickam Jayakannan

We report aggregation induced emission (AIE) driven polysaccharide polymersome as fluorescence resonance energy transfer (FRET) nanoprobes to study their intracellular enzyme-responsive delivery by real-time live-cell confocal microscopy bio-imaging techniques. AIE...


1997 ◽  
Vol 119 (2) ◽  
pp. 151-160 ◽  
Author(s):  
Y. M. Zhang ◽  
R. Kovacevic

Seam tracking and weld penetration control are two fundamental issues in automated welding. Although the seam tracking technique has matured, the latter still remains a unique unsolved problem. It was found that the full penetration status during GTA welding can be determined with sufficient accuracy using the sag depression. To achieve a new full penetration sensing technique, a structured-light 3D vision system is developed to extract the sag geometry behind the pool. The laser stripe, which is the intersection of the structured-light and weldment, is thinned and then used to acquire the sag geometry. To reduce possible control delay, a small distance is selected between the pool rear and laser stripe. An adaptive dynamic search for rapid thinning of the stripe and the maximum principle of slope difference for unbiased recognition of sag border were proposed to develop an effective real-time image processing algorithm for sag geometry acquisition. Experiments have shown that the proposed sensor and image algorithm can provide reliable feedback information of sag geometry for the full penetration control system.


2021 ◽  
Author(s):  
Chao Shi ◽  
Xiangrui Zhao ◽  
Xinbao Wu ◽  
Chunpeng Zhao ◽  
Gang Zhu ◽  
...  

2019 ◽  
Vol 20 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
Seungho Choi ◽  
Kwangyoon Kim ◽  
Jaeho Lee ◽  
Sung Hyuk Park ◽  
Hye-Jin Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document