Controlled Weld Toe Profiles for Fatigue Life Extension of T-Butt Joints: An Application to FSOs & FPSOs

Author(s):  
J. Efraín Rodríguez-Sánchez ◽  
Alejandro Rodríguez-Castellanos ◽  
Manuel F. Carbajal-Romero ◽  
Efrén Ayala-Uraga

Application of controlled weld toe profiles can be considered an option to extend the fatigue life of welded connections when ongoing tankers are converted in dry docks to serve like offshore ships (FPSOs and FSOs). Very slim chances to implement such fatigue improvement will arise when these vessels are in service, since a converted ship is designed to be inspected, maintained, and repaired in situ and not in dry dock as it is uneconomical to interrupt production. Codes recognize fatigue life extension by means of a controlled weld toe profile (2004, NORSOK Standard N-004 Rev. 2 October). Application of a controlled weld toe profile during conversion in selected areas previously identified by stress analysis of the hull structure can lead to extend the converted vessel fatigue life to comply with an expected field life. The American Bureau of Shipping S-N curves allow a credit of 2.2 on fatigue life when suitable toe grinding and NDE are provided. A controlled weld toe profile can be applied during dry dock ship conversion to FSO or FPSO to welds in a noncracked condition but that were identified prone to fatigue cracking in a stress assessment analysis under new service conditions. Credit on fatigue life in various codes and results from experimental data obtained from fatigue tested specimens with a controlled weld toe profile are given. Comments on the design of a controlled weld toe profiles and recommendations based on experimental experience for the implementation of equipment to perform a controlled weld toe profile are also given. A fracture mechanics approach for the assessment of controlled weld toe profiles for fatigue life extension purposes is described. Initially, a comparison of stress concentration factors for a typical T-butt ship hull plate connection with and without weld toe profile control determined by finite element analysis (FEA) is presented. Results obtained from the FEA connection such as through plate stress distribution are used in a fracture mechanics analysis to compare the fatigue crack growth curve in as-welded condition to that with controlled weld toe profile. It is demonstrated that weld toe profile control is a feasible method to be implemented to improve fatigue life in the order of 2 of T-butt welded connections of ships, which are under conversion to serve as FPSOs or FSOs. This fatigue life extension factor should not be considered at the design stage.

Author(s):  
J. Efrai´n Rodri´guez-Sa´nchez ◽  
Alejandro Rodri´guez-Castellanos ◽  
Manuel F. Carbajal-Romero ◽  
Efre´n Ayala-Uraga

Application of controlled weld toe profiles can be considered an option to extend the fatigue life of welded connections when ongoing tankers are converted in dry docks to serve like offshore ships (FPSOs and FSOs). Very slim chances to implement such fatigue improvement will arise when these vessels are in service, since a converted ship is designed to be inspected, maintained and repaired in situ and not in dry dock as it is uneconomical to interrupt production. Codes recognize fatigue life extension by means of a controlled weld toe profile, e.g. [1]. Application of a controlled weld toe profile during conversion in selected areas previously identified by stress analysis of the hull structure can lead to extend the converted vessel fatigue life to comply with an expected field life. The American Bureau of Shipping S-N curves allow a credit of 2.2 on fatigue life when suitable toe grinding and NDE are provided. A controlled weld toe profile can be applied in fatigue crack repaired welds during ship conversion or even on those that during ship conversion are found in a non-cracked condition but were identified prone to fatigue cracking in a stress assessment analysis under in-service conditions. Credit on fatigue life in various codes and results from experimental data obtained from fatigue tested specimens with a controlled weld toe profile are given. Comments on the design of a controlled weld toe profiles and recommendations based on experimental experience for the implementation of equipment to perform a controlled weld toe profile are also given. A Fracture Mechanics approach for the assessment of controlled weld toe profiles for fatigue life extension purposes is described. Initially, a comparison of SCFs for a typical ship hull plate connection with and without weld toe profile control determined by Finite Element Analysis (FEA) is presented. Then, results obtained from the FEA connection such as through plate stress distribution are used in a Fracture Mechanics Analysis to compare the fatigue crack growth curve in as-welded condition to that with controlled weld toe profile.


Author(s):  
Mequanent M. Alamnie ◽  
Yalelet Endalemaw

The initiation and growth of fatigue cracking is mainly due to high stress concentration, heterogeneity and poor quality of weld. The detection and rectification of such weld defects are major concerns of rail network managers to reduce potential risk of rail breaks and derailments. To estimate the fatigue life of welded joints and to analyze the progress of fatigue cracks, a fracture mechanics-based analysis and fatigue models were developed using Finite Element Analysis. The initial flaw is obtained from a sample weld using ultrasonic flaw detecting machine test. Linear Elastic Fracture Mechanics (LEFM) approach based on the Paris law was applied to determine critical crack size and the number of cycles to failure using FRANC3D software. The inspection interval of rail welds before fracture (failure) was suggested based on reliability and life cycle analysis that correspond with minimum overall cost and frequency interval. It is recommended that fracture-based models in combination with reliability analyses can be a sustainable infrastructure decision-making algorithm.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1249
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The existing S-N curves by effective notch stress to assess the fatigue life of gusset welded joints can result in reduced accuracy due to the oversimplification of bead geometries. The present work proposes the parametric formulae of stress concentration factor (SCF) for as-welded gusset joints based on the spline model, by which the effective notch stress can be accurately calculated for fatigue resistance assessment. The spline model is also modified to make it applicable to the additional weld. The fatigue resistance of as-welded and additional-welded specimens is assessed considering the geometric effects and weld profiles. The results show that the error of SCFs by the proposed formulae is proven to be smaller than 5%. The additional weld can increase the fatigue life by as great as 9.4 times, mainly because the increasing weld toe radius and weld leg length lead to the smaller SCF. The proposed series of S-N curves, considering different SCFs, can be used to assess the welded joints with various geometric parameters and weld profiles.


2013 ◽  
Vol 361-363 ◽  
pp. 1727-1734
Author(s):  
Meng Qi Gao ◽  
Ping Ying Wang ◽  
He Ping Ding

To study the fatigue life of asphalt pavement under traffic loads, a 3-D finite element analysis (FEA) Visio-elastic road model was established on the layered theory with ANSYS software. The fatigue damage was calculated with the maximum horizontal tensile strain of asphalt layer bottom based on the fatigue fracture mechanics, when single axis went across. Then the fatigue life was obtained after the fatigue damage occurred in some degree by the Miners linear cumulative damage rule. The results show that it taken 3.4 years when the damage area reached 10% of wheel path area, and 4.5years when reached 45%; while the calculated result was 5.5 years by axial-load conversion method. The analysis shows that the fatigue life of asphalt pavement calculated by fatigue fracture mechanics rule has more significance in practice.


Author(s):  
Alex Berry ◽  
Warren Brown ◽  
Antonio Seijas ◽  
Sarah Cook

Abstract Coke drums are subjected to severe thermal cycling with the skirt to shell connection weld being vulnerable to fatigue cracking. It is essential this connection is well designed to ensure a long life before repairs are inevitably required. Much has been written on coke drum skirt design with the aim of reducing the thermal stresses and strains encountered at the skirt connection weld, some designs have removed the weld completely allowing the drum to sit in an “egg-in-cup” arrangement. This paper includes a short literature review discussing Coke drum skirt designs and explains skirt behaviour during the drum cycle that results in eventual skirt cracking. A case study is reviewed in detail for a new pair of coke drums, where the predicted fatigue life of the chosen welded connection is assessed using axisymmetric, quarter symmetry and half symmetry finite element analysis supported by thermocouple data. The optimised design focuses on a conventional tangential design where the effects of the essential variables such as skirt thickness, skirt connection location, skirt-to head-gap and slot design (length, location & spacing) have been modelled and optimised to obtain a skirt design that produces the longest fatigue life for the intended duty cycle. Coke drum skirts must be installed onto the shell to exacting tolerances during manufacture to ensure concentricity and minimal gap between the skirt and shell. A brief overview of how this is achieved will be presented.


Author(s):  
Martin Muscat ◽  
Kevin Degiorgio ◽  
James Wood

Fatigue cracks in welds often occur at the toe of a weld where stresses are difficult to calculate at the design stage. To circumvent this problem the ASME Boiler and PV code Section VIII Division 2 Part 5 [1] uses the structural stress normal to the expected crack to predict fatigue life using elastic analysis and as welded fatigue curves. The European Unfired Pressure Vessel Code [2] uses a similar approach. The structural stress excludes the notch stress at the weld toe itself. The predicted fatigue life has a strong dependency on the calculated value of structural stress. This emphasizes the importance of having a unique and robust way of extracting the structural stress from elastic finite element results. Different methods are available for the computation of the structural hotspot stress at welded joints. These are based on the extrapolation of surface stresses close to the weld toe, on the linearisation of stresses in the through-thickness direction or on the equilibrium of nodal forces. This paper takes a critical view on the various methods and investigates the effects of the mesh quality on the value of the structural stress. T-shaped welded plates under bending are considered as a means for illustration.


Author(s):  
Priyanka Dhopade ◽  
Andrew J. Neely

Gas turbine engine components are subject to both low-cycle fatigue (LCF) and high-cycle fatigue (HCF) loads. To improve engine reliability, durability and maintenance, it is necessary to understand the interaction of LCF and HCF in these components, which can adversely affect the overall life of the engine while they are occurring simultaneously during a flight cycle. A fully coupled aeromechanical fluid–structure interaction (FSI) analysis in conjunction with a fracture mechanics analysis was numerically performed to predict the effect of representative fluctuating loads on the fatigue life of blisk fan blades. This was achieved by comparing an isolated rotor (IR) to a rotor in the presence of upstream inlet guide vanes (IGVs). A fracture mechanics analysis was used to combine the HCF loading spectrum with an LCF loading spectrum from a simplified engine flight cycle in order to determine the extent of the fatigue life reduction due to the interaction of the HCF and LCF loads occurring simultaneously. The results demonstrate the reduced fatigue life of the blades predicted by a combined loading of HCF and LCF cycles from a crack growth analysis, as compared to the effect of the individual cycles. In addition, the HCF aerodynamic forcing from the IGVs excited a higher natural frequency of vibration of the rotor blade, which was shown to have a detrimental effect on the fatigue life. The findings suggest that FSI, blade–row interaction and HCF/LCF interaction are important considerations when predicting blade life at the design stage of the engine. The lack of available experimental data to validate this problem emphasizes the utility of a numerical approach to first examine the physics of the problem and second to help establish the need for these complex experiments.


Author(s):  
H K Cole

Continuous review, adaptation and improvement through upkeep and maintenance periods has enabled the Royal Navy submarine fleet to remain fit for purpose through successive life extension programmes. Devonport Royal Dockyard, Plymouth, provides nuclear submarine dry dock facilities for maintenance. The Site Licences which authorise operations of these nuclear facilities are administered by the Office for Nuclear Regulation which ensures that the intent of the facility nuclear safety case is maintained throughout all operations. As such, any dock modifications and refit support equipment or structures must be designed within the framework of the safety case. A requirement to undertake refit activities external to the hull of a nuclear submarine while in dock resulted in a design and build project for a temporary dock-bottom building to provide a safe and capable environment. The design of this building’s structure and sub-systems was heavily influenced by the nuclear safety case. This paper explores the challenges of designing equipment within the constraints of the nuclear licensed site, identifies the provenance and the requirements of the nuclear safety case of a dry dock nuclear facility, and examines the influence of this safety case upon requirements management, and the design lifecycle. The design of the dock-bottom building is presented, including an outline of the technical challenges which arose, and some of the novel solutions developed, including; a modular, seismically- qualified, primary structure; and a modified crane incorporating a crushable element. The paper explores the issues of finite element analysis of the primary structure to substantiate performance and satisfy the safety case. The paper also presents a discussion of the influence and impact of the safety case upon the building design project.


Author(s):  
Curtis Sifford ◽  
Ali Shirani

Abstract This paper presents the application of the rules from ASME Section VIII, Division 3 of the ASME Boiler and Pressure Vessel Code for a fracture mechanics evaluation to determine the damage tolerance and fatigue life of a flowline clamp connector. The guidelines from API 579-1 / ASME FFS-1 Fitness-For-Service for the stress analysis of a crack-like flaw have been considered for this assessment. The crack tip is modeled using a refined mesh around the crack tip that is referred to as a focused mesh approach in API 579-1 / ASME FFS-1. The driving force method is used as an alternative to the failure assessment diagram method to account for the influence of crack tip plasticity. The J integral is determined using elastic-plastic finite element analysis and converted to an equivalent stress intensity factor to be compared to the fracture toughness of the material. The fatigue life is calculated using the Paris Law equation and the stress intensity factor calculated from the finite element analysis. The allowable number of design cycles is determined using the safety factors required from Division 3 of the ASME Pressure Vessel Code.


Sign in / Sign up

Export Citation Format

Share Document