Controlled Weld Toe Profiles for Fatigue Life Extension in FSO’s and FPSO’s

Author(s):  
J. Efrai´n Rodri´guez-Sa´nchez ◽  
Alejandro Rodri´guez-Castellanos ◽  
Manuel F. Carbajal-Romero ◽  
Efre´n Ayala-Uraga

Application of controlled weld toe profiles can be considered an option to extend the fatigue life of welded connections when ongoing tankers are converted in dry docks to serve like offshore ships (FPSOs and FSOs). Very slim chances to implement such fatigue improvement will arise when these vessels are in service, since a converted ship is designed to be inspected, maintained and repaired in situ and not in dry dock as it is uneconomical to interrupt production. Codes recognize fatigue life extension by means of a controlled weld toe profile, e.g. [1]. Application of a controlled weld toe profile during conversion in selected areas previously identified by stress analysis of the hull structure can lead to extend the converted vessel fatigue life to comply with an expected field life. The American Bureau of Shipping S-N curves allow a credit of 2.2 on fatigue life when suitable toe grinding and NDE are provided. A controlled weld toe profile can be applied in fatigue crack repaired welds during ship conversion or even on those that during ship conversion are found in a non-cracked condition but were identified prone to fatigue cracking in a stress assessment analysis under in-service conditions. Credit on fatigue life in various codes and results from experimental data obtained from fatigue tested specimens with a controlled weld toe profile are given. Comments on the design of a controlled weld toe profiles and recommendations based on experimental experience for the implementation of equipment to perform a controlled weld toe profile are also given. A Fracture Mechanics approach for the assessment of controlled weld toe profiles for fatigue life extension purposes is described. Initially, a comparison of SCFs for a typical ship hull plate connection with and without weld toe profile control determined by Finite Element Analysis (FEA) is presented. Then, results obtained from the FEA connection such as through plate stress distribution are used in a Fracture Mechanics Analysis to compare the fatigue crack growth curve in as-welded condition to that with controlled weld toe profile.

Author(s):  
J. Efraín Rodríguez-Sánchez ◽  
Alejandro Rodríguez-Castellanos ◽  
Manuel F. Carbajal-Romero ◽  
Efrén Ayala-Uraga

Application of controlled weld toe profiles can be considered an option to extend the fatigue life of welded connections when ongoing tankers are converted in dry docks to serve like offshore ships (FPSOs and FSOs). Very slim chances to implement such fatigue improvement will arise when these vessels are in service, since a converted ship is designed to be inspected, maintained, and repaired in situ and not in dry dock as it is uneconomical to interrupt production. Codes recognize fatigue life extension by means of a controlled weld toe profile (2004, NORSOK Standard N-004 Rev. 2 October). Application of a controlled weld toe profile during conversion in selected areas previously identified by stress analysis of the hull structure can lead to extend the converted vessel fatigue life to comply with an expected field life. The American Bureau of Shipping S-N curves allow a credit of 2.2 on fatigue life when suitable toe grinding and NDE are provided. A controlled weld toe profile can be applied during dry dock ship conversion to FSO or FPSO to welds in a noncracked condition but that were identified prone to fatigue cracking in a stress assessment analysis under new service conditions. Credit on fatigue life in various codes and results from experimental data obtained from fatigue tested specimens with a controlled weld toe profile are given. Comments on the design of a controlled weld toe profiles and recommendations based on experimental experience for the implementation of equipment to perform a controlled weld toe profile are also given. A fracture mechanics approach for the assessment of controlled weld toe profiles for fatigue life extension purposes is described. Initially, a comparison of stress concentration factors for a typical T-butt ship hull plate connection with and without weld toe profile control determined by finite element analysis (FEA) is presented. Results obtained from the FEA connection such as through plate stress distribution are used in a fracture mechanics analysis to compare the fatigue crack growth curve in as-welded condition to that with controlled weld toe profile. It is demonstrated that weld toe profile control is a feasible method to be implemented to improve fatigue life in the order of 2 of T-butt welded connections of ships, which are under conversion to serve as FPSOs or FSOs. This fatigue life extension factor should not be considered at the design stage.


Author(s):  
Mequanent M. Alamnie ◽  
Yalelet Endalemaw

The initiation and growth of fatigue cracking is mainly due to high stress concentration, heterogeneity and poor quality of weld. The detection and rectification of such weld defects are major concerns of rail network managers to reduce potential risk of rail breaks and derailments. To estimate the fatigue life of welded joints and to analyze the progress of fatigue cracks, a fracture mechanics-based analysis and fatigue models were developed using Finite Element Analysis. The initial flaw is obtained from a sample weld using ultrasonic flaw detecting machine test. Linear Elastic Fracture Mechanics (LEFM) approach based on the Paris law was applied to determine critical crack size and the number of cycles to failure using FRANC3D software. The inspection interval of rail welds before fracture (failure) was suggested based on reliability and life cycle analysis that correspond with minimum overall cost and frequency interval. It is recommended that fracture-based models in combination with reliability analyses can be a sustainable infrastructure decision-making algorithm.


1989 ◽  
Vol 111 (1) ◽  
pp. 49-55 ◽  
Author(s):  
H. C. Rhee

Fracture mechanics fatigue life estimation procedures have been developed for offshore structural tubular joints through analyzing a K-joint under the North Sea environment. The objective of this study was to establish reliable procedures for estimating the remaining fatigue life of a tubular joint with cracklike defects. The analysis approach was the utilization of fracture mechanics methods for fatigue crack growth and failure analyses. In this study, the fully mixed mode stress intensity factors of weld toe surface flaws of the K-joint, which were calculated through detailed three-dimensional finite element analyses, were used for fatigue crack growth simulation. For the failure analyses, the failure assessment diagram method was used to predict the conditions for brittle fracture during fatigue crack propagation. The loading conditions considered in the analyses are the brace axial force, in and out-of-plane bending, and torsion.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1249
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The existing S-N curves by effective notch stress to assess the fatigue life of gusset welded joints can result in reduced accuracy due to the oversimplification of bead geometries. The present work proposes the parametric formulae of stress concentration factor (SCF) for as-welded gusset joints based on the spline model, by which the effective notch stress can be accurately calculated for fatigue resistance assessment. The spline model is also modified to make it applicable to the additional weld. The fatigue resistance of as-welded and additional-welded specimens is assessed considering the geometric effects and weld profiles. The results show that the error of SCFs by the proposed formulae is proven to be smaller than 5%. The additional weld can increase the fatigue life by as great as 9.4 times, mainly because the increasing weld toe radius and weld leg length lead to the smaller SCF. The proposed series of S-N curves, considering different SCFs, can be used to assess the welded joints with various geometric parameters and weld profiles.


2013 ◽  
Vol 361-363 ◽  
pp. 1727-1734
Author(s):  
Meng Qi Gao ◽  
Ping Ying Wang ◽  
He Ping Ding

To study the fatigue life of asphalt pavement under traffic loads, a 3-D finite element analysis (FEA) Visio-elastic road model was established on the layered theory with ANSYS software. The fatigue damage was calculated with the maximum horizontal tensile strain of asphalt layer bottom based on the fatigue fracture mechanics, when single axis went across. Then the fatigue life was obtained after the fatigue damage occurred in some degree by the Miners linear cumulative damage rule. The results show that it taken 3.4 years when the damage area reached 10% of wheel path area, and 4.5years when reached 45%; while the calculated result was 5.5 years by axial-load conversion method. The analysis shows that the fatigue life of asphalt pavement calculated by fatigue fracture mechanics rule has more significance in practice.


Author(s):  
Alex Berry ◽  
Warren Brown ◽  
Antonio Seijas ◽  
Sarah Cook

Abstract Coke drums are subjected to severe thermal cycling with the skirt to shell connection weld being vulnerable to fatigue cracking. It is essential this connection is well designed to ensure a long life before repairs are inevitably required. Much has been written on coke drum skirt design with the aim of reducing the thermal stresses and strains encountered at the skirt connection weld, some designs have removed the weld completely allowing the drum to sit in an “egg-in-cup” arrangement. This paper includes a short literature review discussing Coke drum skirt designs and explains skirt behaviour during the drum cycle that results in eventual skirt cracking. A case study is reviewed in detail for a new pair of coke drums, where the predicted fatigue life of the chosen welded connection is assessed using axisymmetric, quarter symmetry and half symmetry finite element analysis supported by thermocouple data. The optimised design focuses on a conventional tangential design where the effects of the essential variables such as skirt thickness, skirt connection location, skirt-to head-gap and slot design (length, location & spacing) have been modelled and optimised to obtain a skirt design that produces the longest fatigue life for the intended duty cycle. Coke drum skirts must be installed onto the shell to exacting tolerances during manufacture to ensure concentricity and minimal gap between the skirt and shell. A brief overview of how this is achieved will be presented.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 869
Author(s):  
Guoqian Wei ◽  
Fan Ye ◽  
Shanshan Li ◽  
Siwen Chen

Based on linear elastic fracture mechanics (LEFM), the fatigue crack evolution process and behavior of corrugated web girders were studied. The global finite element analysis (FEA) model of corrugated web girders was first developed and the equivalent structural stress method was used to reveal the dangerous locations along the weld under the bending load. The weld toe between the tension flange and the web weld, which is near the intersection of the inclined fold and the parallel fold, was determined as the fatigue crack easy-initiating location. Then a small region containing the crack-prone site was extracted as the sub-model for a crack propagating simulation. A semi-circle initial crack with 0.1 mm radius was inserted at the crack easy-initiating location. The stress intensity factors (SIFs; KI, KII, and KIII) of some discrete points along the crack front were calculated by the M-integral method. Based on Nasgro law, the geometry of the new crack front with a given extension length was obtained. Finally, the complete evolution process of the crack propagation was simulated. Results showed that the dominant crack propagating mode is open type (Mode I) and KI is the most important propagating driving force. According to the crack front shape evolution, the whole propagating process was divided into 6 stages. An obvious kink of the crack was found in stage 1, which covered only a very short time. The stages 3, 4 and 5 accounted for the majority of life, among which the stage 3 accounted for as high as 81% of the total life. Therefore, the cycles of the weld toe crack propagating from 0.1 mm to the thickness of the flange can be defined as the prediction life of this kind of structures.


1980 ◽  
Vol 102 (1) ◽  
pp. 85-91 ◽  
Author(s):  
W. H. Cathey ◽  
A. F. Grandt

Aluminum test specimens are prepared with precracked fastener holes, coldworked by means of an oversized mandrel, and then cycled to failure under constant amplitude loading. A simplified fracture mechanics analysis is performed to predict the fatigue crack growth life caused by the coldworking process. As discussed here, the analysis method is capable of obtaining reasonable estimates for the test specimen fatigue life and of determining the maximum crack size which can be “permanently” arrested by the coldworking process.


Author(s):  
Curtis Sifford ◽  
Ali Shirani

Abstract This paper presents the application of the rules from ASME Section VIII, Division 3 of the ASME Boiler and Pressure Vessel Code for a fracture mechanics evaluation to determine the damage tolerance and fatigue life of a flowline clamp connector. The guidelines from API 579-1 / ASME FFS-1 Fitness-For-Service for the stress analysis of a crack-like flaw have been considered for this assessment. The crack tip is modeled using a refined mesh around the crack tip that is referred to as a focused mesh approach in API 579-1 / ASME FFS-1. The driving force method is used as an alternative to the failure assessment diagram method to account for the influence of crack tip plasticity. The J integral is determined using elastic-plastic finite element analysis and converted to an equivalent stress intensity factor to be compared to the fracture toughness of the material. The fatigue life is calculated using the Paris Law equation and the stress intensity factor calculated from the finite element analysis. The allowable number of design cycles is determined using the safety factors required from Division 3 of the ASME Pressure Vessel Code.


Sign in / Sign up

Export Citation Format

Share Document