Improvement of Formability and Spring-Back of AA5052-H32 Sheets Based on Surface Friction Stir Method

Author(s):  
Sangjoon Park ◽  
Chang Gil Lee ◽  
Junehyung Kim ◽  
Heung Nam Han ◽  
Sung-Joon Kim ◽  
...  

A process to improve formability and spring-back was developed for AA5xxx-H temper sheets based on the surface friction stir (SFS) method. In the SFS method, a rotating probe stirs the sheet surface so that material flow and heat, which result from plastic deformation and friction, change the microstructure and macroscopic mechanical properties of the stirred zone and therefore, ultimately, the formability and spring-back performances of the whole sheet. When applied to AA5052-H32 sheets, the process improved formability and spring-back, as experimentally and numerically confirmed in the limit dome height and unconstrained bending tests.

Author(s):  
Behrouz Bagheri ◽  
Mahmoud Abbasi ◽  
Reza Hamzeloo

A tailor welded blank (TWB) includes two or more blanks joined together in order to make a single blank. Different welding methods are used to join blanks with different characteristics and form TWBs. In this study, a comparison is made among the effects of three different welding methods namely CO2 laser welding, friction stir welding (FSW), and friction stir vibration welding (FSVW) on mechanical and formability properties of developed TWBs. AA6061 alloy sheets with different thicknesses (1.2 and 0.8 mm) are joined to get TWBs. The forming limit diagram (FLD) and limiting dome height (LDH) are applied to assess the formability. The Taguchi method is applied to find the optimum values of welding parameters. It is concluded that TWBs made by FSVW have higher mechanical properties and formability compared to TWBs made by FSW and CO2 laser welding. The results also indicate that FLD for TWBs made by FSW is higher than FLD for TWBs made by CO2 laser welding and FLD0, for TWBs made by FSVW, increases as vibration frequency increases.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chatkaew Suriyapha ◽  
Bopit Bubphachot ◽  
Sampan Rittidech

Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material’s behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material’s grains’ size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures.


2019 ◽  
Vol 263 ◽  
pp. 129-137 ◽  
Author(s):  
Yongxian Huang ◽  
Tifang Huang ◽  
Long Wan ◽  
Xiangchen Meng ◽  
Li Zhou

2006 ◽  
Vol 503-504 ◽  
pp. 161-168 ◽  
Author(s):  
Keiichiro Oh-ishi ◽  
Alexandre P. Zhilyaev ◽  
Terry R. McNelley

Friction stir processing (FSP) is a severe plastic deformation (SPD) method that has been applied to as-cast NiAl bronze (NAB) materials, which are widely used for marine components. The thermomechanical cycle of FSP results in homogenization and refinement, and the selective conversion of microstructures from a cast to a wrought condition. The physical metallurgy of NAB is complex and interpretation of the effects of FSP on microstructure has required detailed analysis by optical and electron microscopy methods. Annealing and isothermal hot rolling have been employed to confirm microstructure-based estimates of stir-zone peak temperatures. The variation of mechanical properties was assessed by use of miniature tensile samples and correlated with microstructure for samples from stir zones of single and multi-pass FSP. Exceptional improvement in strength – ductility combinations may be achieved by FSP of NAB materials.


2014 ◽  
Vol 622-623 ◽  
pp. 459-466 ◽  
Author(s):  
Michela Simoncini ◽  
Lorenzo Panaccio ◽  
Archimede Forcellese

The present investigation aims at studying post-welding forming operations of friction stir welded AA1050 aluminium thin sheets. A preliminary investigation has allowed to define the rotational and welding speed values leading to friction stir welded joints with high mechanical properties. Then, formability and elastic springback were evaluated using the hemispherical punch and bending tests, respectively. A microstructural investigation has allowed to relate the mechanical properties of joints to microstructure. Finally, the friction stir welded assemblies were subjected to air bending and stamping experiments in order to evaluate their attitude to undergo to sheet metal forming operations.


2013 ◽  
Vol 465-466 ◽  
pp. 1309-1313
Author(s):  
Mohd Hasbullah Idris ◽  
Mohd Shamsul Husin

The present study is aimed to determine the effect of friction stir welding pin; square and diamond shape on mechanical properties of butt joint AA6061 weldment. Welding was carried out at different plunge depths of 0.0, 0.2, 0.3 and 0.4 mm together with rotation and transverse speeds of 500 rpm and 40 mm/min, respectively. Material flow, tensile strength and hardness of the weldment were evaluated. The results indicated that joint properties were significantly affected by tool design. It was found that material flow was higher for diamond pin tool compared to that of square pin resulting in considerable increased in tensile strength of the joint. In addition, the highest tensile strength was obtained on the samples welded with square shape pin at 0.4 mm plunge depth whilst the lowest was by diamond shape at the plunge depth of 0.0 mm. Regardless of pin shape and plunge depth; asymmetrical hardness distribution was observed for all weldments. The highest hardness was found to be close to the weld line produced by the diamond shaped pin at 0.0 mm plunge depth.


2014 ◽  
Vol 1616 ◽  
Author(s):  
G.Y. Perez-Medina ◽  
P. Zambrano ◽  
F.A. Reyes-Valdés ◽  
H.F. López

ABSTRACTThe effect of friction stir welding (FSW) on the resultant microstructures in the welded nugget (WN), thermo-mechanically affected zone (TMAZ), heat affected zone (HAZ) and base metal (BM) of a TRIP-780 steel was investigated in this work. Color tint etching was used in the welded regions to disclose the exhibited microstructural constituents. In addition, significant fine grain size material was found in the WN regions. It was found that is considered to have experienced severe plastic deformation due to interaction with the welding tool pin lead to a drop in mechanical properties. Lap shear tensile testing indicated that the steel shear tension strength in the welded condition dropped compared with the BM. Microhardness profiles of the welded regions indicated that the hardness in both the WN and TMAZ were relatively elevated suggesting the development of martensite in these regions. In particular, the WN was found to shear fracture with uniformly distributed elongation shear dimples.


Sign in / Sign up

Export Citation Format

Share Document