A Finite Element Prediction of Strain on Cells in a Highly Porous Collagen-Glycosaminoglycan Scaffold

2008 ◽  
Vol 130 (6) ◽  
Author(s):  
A. J. F. Stops ◽  
L. A. McMahon ◽  
D. O’Mahoney ◽  
P. J. Prendergast ◽  
P. E. McHugh

Tissue engineering often involves seeding cells into porous scaffolds and subjecting the scaffold to mechanical stimulation. Current experimental techniques have provided a plethora of data regarding cell responses within scaffolds, but the quantitative understanding of the load transfer process within a cell-seeded scaffold is still relatively unknown. The objective of this work was to develop a finite element representation of the transient and heterogeneous nature of a cell-seeded collagen-GAG-scaffold. By undertaking experimental investigation, characteristics such as scaffold architecture and shrinkage, cellular attachment patterns, and cellular dimensions were used to create a finite element model of a cell-seeded porous scaffold. The results demonstrate that a very wide range of microscopic strains act at the cellular level when a sample value of macroscopic (apparent) strain is applied to the collagen-GAG-scaffold. An external uniaxial strain of 10% generated a cellular strain as high as 49%, although the majority experienced less than ∼5% strain. The finding that the strain on some cells could be higher than the macroscopic strain was unexpected and proves contrary to previous in vitro investigations. These findings indicate a complex system of biophysical stimuli created within the scaffolds and the difficulty of inducing the desired cellular responses from artificial environments. Future in vitro studies could also corroborate the results from this computational prediction to further explore mechanoregulatory mechanisms in tissue engineering.

Author(s):  
A. J. F. Stops ◽  
L. A. McMahon ◽  
D. O’Mahoney ◽  
P. E. McHugh ◽  
P. J. Prendergast

Tissue engineering is an emerging area in bioengineering engaging biomaterials, biology and biomechanics. Current in-vitro studies have shown mesenchymal differentiation into specific cellular lineages when using osteoinductive factors [1], though the quantitative understanding of the load transfer process within a cell-seeded scaffold is still relatively unknown. Here, this paper presents a finite element simulation of the cellular-scaffold interaction so that cellular strain and the corresponding strain mechanisms can be evaluated.


Author(s):  
Hajar Sharif ◽  
Yaser Shanjani ◽  
Mihaela Vlasea ◽  
Ehsan Toyserkani

This work is concerned with the finite element modeling of a dual-porous scaffold including both fine and coarse pores. The layer with coarse pores is suitable for bone in vivo ingrowth and the finer pore layer is appropriate for in vitro cartilage culturing. Such scaffolds can be extensively used for repairing of osteochondral defects. The bio-mechanical properties of the proposed scaffold, including apparent stiffness and strain-based capability of the cell ingrowth, are identified using a 3D Finite Element Model. Moreover, to study the effect of the second layer on the strength of the whole scaffold, the stiffness of the dual and single-porous scaffolds was compared. The result of this study shows that the stiffness decreases by adding the second layer to a single-porous scaffold. Additionally, principal strain histograms of the single and the dual-porous scaffolds are compared to assess the effect of added layer on the capability for cell ingrowth stimulation of the whole structure. According to the results, the dual-porous scaffold provides more homogeneous distribution but a smaller amount of micro-strains which may cause different cell-growth behavior.


Author(s):  
Jin-Hyung Shim ◽  
Jong Young Kim ◽  
Kyung Shin Kang ◽  
Jung Kyu Park ◽  
Sei Kwang Hahn ◽  
...  

Tissue engineering is an interdisciplinary field that focuses on restoring and repairing tissues or organs. Cells, scaffolds, and biomolecules are recognized as three main components of tissue engineering. Solid freeform fabrication (SFF) technology is required to fabricate three-dimensional (3D) porous scaffolds to provide a 3D environment for cellular activity. SFF technology is especially advantageous for achieving a fully interconnected, porous scaffold. Bone morphogenic protein-2 (BMP-2), an important biomolecule, is widely used in bone tissue engineering to enhance bone regeneration activity. However, methods for the direct incorporation of intact BMP-2 within 3D scaffolds are rare. In this work, 3D porous scaffolds with poly(lactic-co-glycolic acid) chemically grafted hyaluronic acid (HA-PLGA), in which intact BMP-2 was directly encapsulated, were successfully fabricated using SFF technology. BMP-2 was previously protected by poly(ethylene glycol) (PEG), and the BMP-2/PEG complex was incorporated in HA-PLGA using an organic solvent. The HAPLGA/PEG/BMP-2 mixture was dissolved in chloroform and deposited via a multi-head deposition system (MHDS), one type of SFF technology, to fabricate a scaffold for tissue engineering. An additional air blower system and suction were installed in the MHDS for the solvent-based fabrication method. An in vitro evaluation of BMP-2 release was conducted, and prolonged release of intact BMP-2, for up to 28 days, was confirmed. After confirmation of advanced proliferation of pre osteoblasts, a superior differentiation effect of the HA-PLGA/PEG/BMP-2 scaffold was validated by measuring high expression levels of bone-specific markers, such as alkaline phosphatase (ALP) and osteocalcin (OC). We show that our solvent-based fabrication is a non-toxic method for restoring cellular activity. Moreover, the HAPLGA/PEG/BMP-2 scaffold was effective for bone regeneration.


2007 ◽  
Vol 361-363 ◽  
pp. 931-934 ◽  
Author(s):  
Conor T. Buckley ◽  
K.U. O’Kelly

Tissue-engineering scaffold-based strategies have suffered from limited cell depth viability when cultured in vitro, with viable cells existing within the outer 250-500μm from the fluid-scaffold interface. This is primarily believed to be due to the lack of nutrient delivery into and waste removal from the inner regions of the scaffold construct. Other issues associated with porous scaffolds involve poor seeding efficiencies and limited cell penetration resulting in heterogeneous cellular distributions. This work focuses on the development a novel hydroxyapatite multi-domain porous scaffold architecture (i.e. a scaffold providing a discrete domain for cell occupancy and a separate domain for nutrient delivery) with the specific objectives of embodying in one scaffold the structures required to optimise cell seeding, cell proliferation and migration and potentially to facilitate vascularisation once implanted in vivo. This paper presents the development of the multidomain architecture and preliminary results on cell viability which show a significant improvement in cell viability in the scaffold interiors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1319
Author(s):  
Muhammad Umar Aslam Khan ◽  
Wafa Shamsan Al-Arjan ◽  
Mona Saad Binkadem ◽  
Hassan Mehboob ◽  
Adnan Haider ◽  
...  

Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young’s modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.


2006 ◽  
Vol 129 (1) ◽  
pp. 58-65 ◽  
Author(s):  
B. Scott Kessler ◽  
A. Sherif El-Gizawy ◽  
Douglas E. Smith

The accuracy of a finite element model for design and analysis of a metal forging operation is limited by the incorporated material model’s ability to predict deformation behavior over a wide range of operating conditions. Current rheological models prove deficient in several respects due to the difficulty in establishing complicated relations between many parameters. More recently, artificial neural networks (ANN) have been suggested as an effective means to overcome these difficulties. To this end, a robust ANN with the ability to determine flow stresses based on strain, strain rate, and temperature is developed and linked with finite element code. Comparisons of this novel method with conventional means are carried out to demonstrate the advantages of this approach.


Author(s):  
Feihu Zhao ◽  
Yi Xiong ◽  
Keita Ito ◽  
Bert van Rietbergen ◽  
Sandra Hofmann

Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent – assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.


2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


Sign in / Sign up

Export Citation Format

Share Document