scholarly journals Laboratory Simulation of Drill Bit Dynamics Using a Model-Based Servohydraulic Controller

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
David W. Raymond ◽  
M. A. Elsayed ◽  
Yarom Polsky ◽  
Scott S. Kuszmaul

Drilling costs are significantly influenced by bit performance when drilling in offshore formations. Retrieving and replacing damaged downhole tools is an extraordinarily expensive and time-intensive process, easily costing several hundred thousand dollars of offshore rig time plus the cost of damaged components. Dynamic behavior of the drill string can be particularly problematic when drilling high strength rock, where the risk of bit failure increases dramatically. Many of these dysfunctions arise due to the interaction between the forces developed at the bit-rock interface and the modes of vibration of the drill string. Although existing testing facilities are adequate for characterizing bit performance in various formations and operating conditions, they lack the necessary drill string attributes to characterize the interaction between the bit and the bottom hole assembly (BHA). A facility that includes drill string compliance and yet allows real-rock/bit interaction would provide an advanced practical understanding of the influence of drill string dynamics on bit life and performance. Such a facility can be used to develop new bit designs and cutter materials, qualify downhole component reliability, and thus mitigate the harmful effects of vibration. It can also serve as a platform for investigating process-related parameters, which influence drilling performance and bit-induced vibration to develop improved practices for drilling operators. The development of an advanced laboratory simulation capability is being pursued to allow the dynamic properties of a BHA to be reproduced in the laboratory. This simulated BHA is used to support an actual drill bit while conducting drilling tests in representative rocks in the laboratory. The advanced system can be used to model the response of more complex representations of a drill string with multiple modes of vibration. Application of the system to field drilling data is also addressed.

Author(s):  
David W. Raymond ◽  
M. A. Elsayed ◽  
Yarom Polsky ◽  
Scott S. Kuszmaul

Drilling costs are significantly influenced by bit performance when drilling in off-shore formations. Retrieving and replacing damaged downhole tools is an extraordinarily expensive and time-intensive process, easily costing several hundred thousand dollars of off-shore rig time plus the cost of damaged components. Dynamic behavior of the drillstring can be particularly problematic when drilling high strength rock where the risk of bit failure increases dramatically. Many of these dysfunctions arise due to the interaction between the forces developed at the bit-rock interface and the modes of vibration of the drillstring. Although existing testing facilities are adequate for characterizing bit performance in various formations and operating conditions, they lack the necessary drillstring attributes to characterize the interaction between the bit and the bottom hole assembly (BHA). A facility that includes drillstring compliance and yet allows real rock/bit interaction would provide an advanced, practical understanding of the influence of drillstring dynamics on bit life and performance. Such a facility can be used to develop new bit designs and cutter materials, qualify downhole component reliability, and thus mitigate the harmful effects of vibration. It can also serve as a platform for investigating process-related parameters which influence drilling performance and bit-induced vibration to develop improved practices for drilling operators. Sandia National Laboratories is pursuing the development of an advanced laboratory simulation capability which allows the dynamic properties of a BHA to be reproduced in the laboratory. This simulated BHA is used to support an actual drill bit while conducting drilling tests in representative rocks in the laboratory. The advanced system can be used to model the response of more complex representations of a drillstring with multiple modes of vibration. Application of the system to field drilling data is also addressed.


Author(s):  
Nicholas J. Thorp ◽  
Geir Hareland ◽  
Brian R. Elbing ◽  
Runar Nygaard

The drill bit blaster (DBB) studied in this paper aims to maximize the drilling rate of penetration (ROP) by using a flow interrupting mechanism to create drilling fluid pulsation. The fluctuating fluid pressure gradient generated during operation of the DBB could lead to more efficient bit cutting efficiency due to substrate depressurization and increased cutting removal efficiency and the vibrations created could reduce the drill string friction allowing a greater weight on bit (WOB) to be achieved. In order to maximize these mechanisms the effect of several different DBB design changes and operating conditions was studied in above ground testing. An analytical model was created to predict the influence of various aspects of the drill bit blaster design, operating conditions and fluid properties on the bit pressure characteristics and compared against experimental results. The results indicate that internal tool design has a significant effect on the pulsation frequency and amplitude, which can be accurately modeled as a function of flowrate and internal geometry. Using this model an optimization study was conducted to determine the sensitivity of the fluid pulsation power on various design and operating conditions. Application of this technology in future designs could allow the bit pressure oscillation frequency and amplitude to be optimized with regard to the lithology of the formations being drilled which could lead to faster, more efficient drilling potentially cutting drilling costs and leading to a larger number of oil and natural gas plays being profitable.


Author(s):  
Hoon Kang ◽  
Jin-Young Park ◽  
Jung-Woo Cho ◽  
Jin-Seok Jang ◽  
Kun-Woo Kim ◽  
...  

This paper proposes an optimal button arrangement of a percussion drill bit and its operating condition to improve drilling efficiency. A new evaluation method is introduced for the button arrangement that utilizes the superimposed impact area, blank area, and drilling deviation moment as the quantitative indices to evaluate the impact of buttons on the rock surface. To determine the optimal button arrangement and its operating conditions, a progressive metamodel-based design optimization was conducted using the new evaluation indices as the analysis response, and then the optimal solution was determined through iteration. Consequently, all the button evaluation indices were reduced significantly and the impact areas were distributed uniformly under a specific operating condition. Additionally, the drilling performances of the optimal button arrangement were investigated according to the operating conditions to obtain the maximum drilling performance in terms of the drilling machine operation.


2019 ◽  
Vol 16 (3) ◽  
pp. 276-289
Author(s):  
N. V. Savenkov ◽  
V. V. Ponyakin ◽  
S. A. Chekulaev ◽  
V. V. Butenko

Introduction. At present, stands with running drums are widely used for various types of tests. Power stands play a special role. Such stands take the mechanical power from the driving wheels of the car. This simulates the process of movement of the vehicle under operating conditions. Such equipment has various designs, principles of operation and performance. It is also used in tests that are different by purpose, development stages and types: research, control, certification, etc. Therefore, it is necessary in order to determine the traction-speed, fuel-efficient and environmental performance characteristics.Materials and methods. The paper provides the overview of the power stands with running drums, which are widespread on the domestic market. The authors carried out the analysis of the main structural solutions: schemes of force transfer between the wheel and the drum; types of loading devices; transmission layout schemes and features of the control and measuring complex. The authors also considered corresponding advantages and disadvantages, recommended spheres of application, demonstrated parameters and characteristics of the units’ workflow, presented components and equipment.Discussion and conclusions. The authors critically evaluate existing models of stands with running drums. Such information is useful for choosing serial models of stands and for developing technical tasks for designing or upgrading the equipment.


2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


2021 ◽  
pp. 100093
Author(s):  
Vishakha Gilhotra ◽  
Rekha Yadav ◽  
Aditi Sugha ◽  
Laxmi Das ◽  
Ashutosh Vashisht ◽  
...  

Author(s):  
Muhsin Aljuboury ◽  
Md Jahir Rizvi ◽  
Stephen Grove ◽  
Richard Cullen

The goal of this experimental study is to manufacture a bolted GFRP flange connection for composite pipes with high strength and performance. A mould was designed and manufactured, which ensures the quality of the composite materials and controls its surface grade. Based on the ASME Boiler and Pressure Vessel Code, Section X, this GFRP flange was fabricated using biaxial glass fibre braid and polyester resin in a vacuum infusion process. In addition, many experiments were carried out using another mould made of glass to solve process-related issues. Moreover, an investigation was conducted to compare the drilling of the GFRP flange using two types of tools; an Erbauer diamond tile drill bit and a Brad & Spur K10 drill. Six GFRP flanges were manufactured to reach the final product with acceptable quality and performance. The flange was adhesively bonded to a composite pipe after chamfering the end of the pipe. Another type of commercially-available composite flange was used to close the other end of the pipe. Finally, blind flanges were used to close both ends, making the pressure vessel that will be tested under the range of the bolt load and internal pressure.


Author(s):  
Enzo Giacomelli ◽  
Massimo Schiavone ◽  
Fabio Manfrone ◽  
Andrea Raggi

Poppet valves have been used for a long time for very high pressure reciprocating compressors, as for example in the case of Low Density Polyethylene. These applications are very critical because the final pressure can reach 350 MPa and the evaluation of the performance of the machines is strongly connected to the proper operation and performance of the valve itself. The arrangement of cylinders requires generally a certain compactness of valve to withstand high fatigue stresses, but at the same time pressure drop and operating life are very important. In recent years the reliability of the machines has been improving over and over and the customers’ needs are very stringent. Therefore the use of poppet valves has been extended to other cases. In general the mentioned applications are heavy duty services and the simulation of the valves require some coefficients to be used in the differential equations, able to describe the movement of plate/disk or poppet and the flow and related pressure drop through the valves. Such coefficients are often determined in an experimental way in order to have a simulation closer to the real operating conditions. For the flow coefficients it is also possible today to use theoretical programs capable of determining the needed values in a quick and economical way. Some investigations have been carried out to determine the values for certain geometries of poppet valves. The results of the theory have been compared with some experimental tests. The good agreement between the various methods indicates the most suitable procedure to be applied in order to have reliable data. The advantage is evident as the time necessary for the theoretical procedure is faster and less expensive. This is of significant importance at the time of the design and also in case of a need to provide timely technical support for the operating behavior of the valves. Particularly for LDPE, the optimization of all the parameters is strongly necessary. The fatigue stresses of cylinder heads and valve bodies have to match in fact with gas passage turbulence and pressure drop, added to the mechanical behavior of the poppet valve components.


Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


1982 ◽  
Vol 104 (3) ◽  
pp. 245-252 ◽  
Author(s):  
S. Saha ◽  
S. Pal ◽  
J. A. Albright

The majority of twist drills used in orthopaedics are very similar to chisel pointed metal drilling bits. Modifications usually observed are reduction of the point angle to 90 deg and sometimes grinding of the entire cutting lip at 0 deg rake angle, which appeared to have been made arbitrarily without any advantage. We have attempted to design a surgical drill bit with the objective of minimization of the drilling thrust and temperature and effective removal of bone chips. Our results showed that the presence of the chisel edge was mainly responsible for increasing the thrust force and the temperature developed. The effects of a constant feed rate and thrust on the peak temperature were also examined. The combined effect of the helix and the point angles on the rake angle which in turn determines the cutting efficiency was analyzed for various types of surgical bits. Based on our results and previously published data from the literature an optimized drill bit was designed with a split point, a point angle of 118 deg, a parabolic flute, and a helix angle of 36 deg and its performance was compared with other existing surgical drill bits. For drilling in compact bone, the new design decreased the thrust load by 45 percent and the peak temperature rise by 41 percent. Simlar improvements were also recorded for drilling bone cement. The time of drilling a bone cortex was also significantly reduced and “walking” on the curved bone surface was eliminated and dimensional tolerance on hole sizes was improved. The new design is likely to reduce the time of surgery and also minimize the tissue damage.


Sign in / Sign up

Export Citation Format

Share Document