Soft EHL Simulations of U-Cup and Step Hydraulic Rod Seals

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Bo Yang ◽  
Richard F. Salant

A numerical soft elastohydrodynamic lubrication model of a reciprocating hydraulic seal has been used to simulate the performance of a U-cup seal and a step seal in a conventional actuator. The model consists of coupled steady state fluid mechanics, deformation mechanics, contact mechanics, and thermal analyses, with an iterative computational procedure. The results indicate that for a given seal roughness and stroke length there is a critical rod speed above which the seal will not leak. The critical speed is dependent on both seal roughness and sealed pressure.

Author(s):  
Bo Yang ◽  
Richard F. Salant

A numerical soft EHL (elastohydrodynamic lubrication) model of a reciprocating hydraulic step seal has been used to analyze seal performance. The model consists of coupled steady state fluid mechanics, deformation mechanics, contact mechanics and thermal analyses, with an iterative computational procedure. Results for a typical step seal are compared with those of a double lip U-cup seal.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Bo Yang ◽  
Richard F. Salant

A numerical model of a tandem reciprocating hydraulic rod seal, consisting of two elastomeric U cup seals, has been constructed. It is applicable to cases in which the stroke length is significantly larger than the seal width. The model consists of coupled steady state fluid mechanics, deformation mechanics, and contact mechanics analyses, with an iterative computational procedure. The behaviors of the two seals are coupled through the pressure∕density in the interseal region and through flow continuity. Results for a typical tandem seal are compared to those of a single seal and a double lip seal.


Author(s):  
Bo Yang ◽  
Richard F. Salant

A numerical model of a tandem reciprocating hydraulic rod seal, consisting of two elastomeric U cup seals, has been constructed. The model consists of coupled steady state fluid mechanics, deformation mechanics and contact mechanics analyses, with an iterative computational procedure. The behaviors of the two seals are coupled through the pressure/density in the inter-seal region and through flow continuity. Results for a typical tandem seal are compared with those of a single seal and a double lip seal.


2006 ◽  
Vol 129 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Richard F. Salant ◽  
Nicholas Maser ◽  
Bo Yang

A numerical model of an elastomeric reciprocating hydraulic rod seal has been constructed. The model consists of coupled fluid mechanics, deformation mechanics, and contact mechanics analyses, with an iterative computational procedure. The fluid mechanics analysis consists of the solution of the Reynolds equation, using flow factors to account for surface roughness. Deformation of the seal is computed through the use of influence coefficients, obtained from an off-line finite element analysis. The contact mechanics analysis uses the Greenwood and Williamson model. The seal model is used to predict leakage rate, friction force, fluid and contact pressure distributions, and film thickness distribution. Results for a typical seal show that the seal operates with mixed lubrication, and the seal roughness plays an important role in determining whether or not the seal leaks.


Author(s):  
Rebekah J. Nixon ◽  
Sascha H. Kranen ◽  
Anni Vanhatalo ◽  
Andrew M. Jones

AbstractThe metabolic boundary separating the heavy-intensity and severe-intensity exercise domains is of scientific and practical interest but there is controversy concerning whether the maximal lactate steady state (MLSS) or critical power (synonymous with critical speed, CS) better represents this boundary. We measured the running speeds at MLSS and CS and investigated their ability to discriminate speeds at which $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 was stable over time from speeds at which a steady-state $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 could not be established. Ten well-trained male distance runners completed 9–12 constant-speed treadmill tests, including 3–5 runs of up to 30-min duration for the assessment of MLSS and at least 4 runs performed to the limit of tolerance for assessment of CS. The running speeds at CS and MLSS were significantly different (16.4 ± 1.3 vs. 15.2 ± 0.9 km/h, respectively; P < 0.001). Blood lactate concentration was higher and increased with time at a speed 0.5 km/h higher than MLSS compared to MLSS (P < 0.01); however, pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 did not change significantly between 10 and 30 min at either MLSS or MLSS + 0.5 km/h. In contrast, $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 increased significantly over time and reached $$\dot{V}{\text{O}}_{2\,\,\max }$$ V ˙ O 2 max at end-exercise at a speed ~ 0.4 km/h above CS (P < 0.05) but remained stable at a speed ~ 0.5 km/h below CS. The stability of $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 at a speed exceeding MLSS suggests that MLSS underestimates the maximal metabolic steady state. These results indicate that CS more closely represents the maximal metabolic steady state when the latter is appropriately defined according to the ability to stabilise pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 .


Author(s):  
Yiming Han ◽  
Jing Wang ◽  
Xuyang Jin ◽  
Shanshan Wang ◽  
Rui Zhang

Under steady-state pure rolling conditions with low speed, the thickener fiber agglomerations can be maintained for a long time, generating a beneficial thicker film thickness. However, in industrial applications, motions with sliding or transient effects are very common for gears, rolling-element bearings or even chain drives, evaluation of the grease performance under such conditions is vital for determining the lubrication mechanism and designing new greases. In this project, optical interferometry experiments were carried out on a ball-disk test rig to study the disintegration time of the grease thickener agglomerations with the increase of the slide-to-roll ratio under steady-state and reciprocation motions. Under steady-state conditions, the thickener fiber agglomeration can exist for a while and the time becomes shorter with the increase of the slide-to-roll ratio above the critical speed. Below the critical speed, the thickener fiber can exist in the contact in the form of a quite thick film for a very long time under pure rolling conditions but that time is decreased with the increase of the slide-to-roll ratio. The introduction of the transient effect can further reduce the existence time of the thickener.


2013 ◽  
Vol 19 (4) ◽  
pp. 724-729 ◽  
Author(s):  
Marcos Franken ◽  
Fernando Diefenthaeler ◽  
Felipe Collares Moré ◽  
Ricardo Peterson Silveira ◽  
Flávio Antônio de Souza Castro

The purpose of this study was to investigate the critical stroke rate (CSR) compared to the average stroke rate (SR) when swimming at the critical speed (CS). Ten competitive swimmers performed five 200 m trials at different velocities relative to their CS (90, 95, 100, 103 and 105%) in front crawl. The CSR was significantly higher than the SR at 90% of the CS and lower at 105% of the CS. Stroke length (SL) at 103 and 105% of the CS were lower than the SL at 90, 95, and 100% of the CS. The combination of the CS and CSR concepts can be useful for improving both aerobic capacity/power and technique. CS and CSR could be used to reduce the SR and increase the SL, when swimming at the CS pace, or to increase the swimming speed when swimming at the CSR.


1977 ◽  
Vol 99 (4) ◽  
pp. 552-558 ◽  
Author(s):  
M. D. Rabinowitz ◽  
E. J. Hahn

The synchronous steady-state operation of a centrally preloaded single mass flexible rotor supported in squeeze film bearing dampers is examined theoretically. Assuming the short bearing approximation and symmetric motions, frequency response curves are presented exhibiting the effect of relevant system parameters on rotor excursion amplitudes and unbalance transmissibilities for both pressurized and unpressurized lubricant supply. Hence, the influence of rotor flexibility, rotor mass distribution, rotor speed, bearing dimensions, lubricant viscosity, support flexibility can be readily determined, allowing for optimal rotor bearing system design. It is shown that with pressurized bearing mounts, the possibility of undesirable operation modes is eliminated and a smooth passage through the first pin-pin critical speed of the rotor is feasible, while absence of pressurization significantly limits the maximum safe unbalance in the vicinity of this critical speed. Significant decrease in transmissibility and rotor excursion amplitudes over those obtainable with rigid mounts are shown to be a practical possibility, with consequent decrease in the vibration level of the rotor mounts and prolongation of rolling element bearing life, while maintaining acceptable rotor vibration amplitudes. A design example is included to illustrate the use of the data.


Author(s):  
Ansheng Zhang ◽  
Jing Wang ◽  
Yiming Han ◽  
Jianjun Zhang ◽  
Yi Liu

For industrial roller or bush chains, the bush swings relative to the pin at working condition. If proper lubrication is maintained, an elastohydrodynamic lubrication contact is formed between the pin and the bush. In this study, a custom-made pin was used to replace the steel ball of a ball-disk test rig and optical interferometric experiments were carried out to study the effect of pin generatrix on the lubrication performance. The effects of generatrix shape, stroke length and oil supply condition on the lubrication state were explored. It is found that the change of the generatrix has an important influence on the oil film thickness, especially under rare oil supply condition.


2021 ◽  
Vol 153 ◽  
pp. 106603
Author(s):  
Chong Xiang ◽  
Fei Guo ◽  
Xiang Liu ◽  
Hong Fang ◽  
Yuming Wang

Sign in / Sign up

Export Citation Format

Share Document