Stability and Stationary Response of a Skew Jeffcott Rotor With Geometric Uncertainty

Author(s):  
Nicolas Driot ◽  
Alain Berlioz ◽  
Claude-Henri Lamarque

The aim of this work is to apply stochastic methods to investigate uncertain parameters of rotating machines with constant speed of rotation subjected to a support motion. As the geometry of the skew disk is not well defined, randomness is introduced and affects the amplitude of the internal excitation in the time-variant equations of motion. This causes uncertainty in dynamical behavior, leading us to investigate its robustness. Stability under uncertainty is first studied by introducing a transformation of coordinates (feasible in this case) to make the problem simpler. Then, at a point far from the unstable area, the random forced steady state response is computed from the original equations of motion. An analytical method provides the probability of instability, whereas Taguchi’s method is used to provide statistical moments of the forced response.

Author(s):  
Nicolas Driot ◽  
Alain Berlioz ◽  
Claude Henri Lamarque

The dynamical behavior of an asymmetrical Jeffcott rotor subjected to a base translational motion is investigated. As the geometry of the skew disk is not well defined, we introduce some randomness. This uncertainty affects a particular parameter in the time-variant motion equations. Consequently, the amplitude of the parametric excitation is a random parameter which leads us to investigate the robustness of the dynamics. The stability is first studied by introducing a transformation of coordinates (feasible in this case) making the problem simpler. Then, far away from the unstable area, the random forced steady state response is computed from the original motion equations. The Taguchi’s method is used to provide statistical moments of the forced response.


Author(s):  
Daniel A. Tortorelli

Abstract Adjoint and direct differentiation methods are used to formulate design sensitivities for the steady-state response of damped linear elastodynamic systems that are subject to periodic loads. Variations of a general response functional are expressed in explicit form with respect to design field perturbations. Modal analysis techniques which uncouple the equations of motion are used to perform the analyses. In this way, it is possible to obtain closed form relations for the sensitivity expressions. This eliminates the need to evaluate the adjoint response and psuedo response (these responses are associated with the adjoint and direct differentiation sensitivity problems) over the time domain. The sensitivities need not be numerically integrated over time, thus they are quickly computed. The methodology is valid for problems with proportional as well as non-proportional damping. In an example problem, sensitivities of steady-state vibration amplitude of a crankshaft subject to engine firing loads are evaluated with respect to the stiffness, inertial, and damping parameters which define the shaft. Both the adjoint and direct differentiation methods are used to compute the sensitivities. Finite difference sensitivity approximations are also calculated to validate the explicit sensitivity results.


Author(s):  
George Valsamos ◽  
Christos Theodosiou ◽  
Sotirios Natsiavas

Dynamic response related to fatigue prediction of an urban bus is investigated. First, a quite complete model subjected to road excitation is employed in order to extract sufficiently reliable and accurate information in a fast way. The bus model is set up by applying the finite element method, resulting to an excessive number of degrees of freedom. In addition, the bus suspension units involve nonlinear characterstics. A step towards alleviating this difficulty is the application of an appropriate coordinate transformation, causing a drastic reduction in the dimension of the final set of the equations of motion. This allows the application of a systematic numerical methodology leading to direct determination of periodic steady state response of nonlinear models subjected to periodic excitation. Next, typical results were obtained for excitation resulting from selected urban road profiles. These profiles have either a known form or known statistical properties, expressed by an appropriate spatial power spectral density function. In all cases examined, the emphasis was put on investigating ride response. The main attention was focused on identifying areas of the bus suspension and frame subsystems where high stress levels are developed. This information is based on the idea of a nonlinear transfer function and provides the basis for applying suitable criteria in order to perform analyses leading to prediction of fatigue failure.


Author(s):  
Shigeru Aoki ◽  
Takeshi Watanabe

This paper deals with steady-state response of a continuous system with collision characteristics. Considering the energy loss in a collision, an analytical method of approximate solution for the continuous system with symmetrical hysteresis loop characteristics is presented. The resonance curves of nonlinear response obtained from approximate solution are shown as discontinuous line, and are discussed the phenomenon.


1986 ◽  
Vol 108 (4) ◽  
pp. 633-640 ◽  
Author(s):  
E. Bazan ◽  
J. Bielak ◽  
J. H. Griffin

A simple methodology to study the steady-state response of systems consisting of linear elastic substructures connected by friction interfaces is presented. Assuming that only the first Fourier components of the friction forces contribute significantly to the system response, the differential equations of motion are transformed into a system of algebraic complex equations. Then, an efficient linearized procedure to solve these equations for different normal loads in the friction interfaces is developed. As part of the solution procedure, a criterion to determine the slip-to-stuck transitions in the joint is proposed. Within the assumption that the response is harmonic, any desired accuracy can be obtained with this methodology. Selected numerical examples are presented to illustrate practical applications and the relevant features of the methodology. Due to its simplicity, this methodology is particularly appropriate for performing parametric studies that require solutions for many values of normal loads.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Zhaoli Zheng ◽  
Yonghui Xie ◽  
Di Zhang ◽  
Xiaolong Ye

The asymmetric rotor and the rub-impact behavior are important sources of instability and may cause severe vibrations. However, the dynamics of the rotor-bearing system simultaneously considering the two factors has not gained sufficient attention in available investigations. In this paper, the steady-state response and stability of an asymmetric rotor with rub-impact were evaluated. The asymmetric rotor was modeled by beam elements with asymmetric cross section, and the nonlinear equations of motion were established in the rotating frame. The multiharmonic balance (MHB) method was employed to obtain the linearized form of the nonlinear equations of motion. Either the asymmetry of rotor or rub-impact can result in instability and make the problem difficult to solve. Thus, the arc-length method was utilized to trace the branch of the solutions. In order to improve the calculation speed and accurately predict the solution, the alternating frequency/time domain (AFT) was adopted to calculate the iteration of the arc-length method. Based on the proposed method, the effects of stator stiffness, gap size, unbalance, and asymmetric in shaft on the steady-state response and stability were obtained.


1993 ◽  
Vol 115 (4) ◽  
pp. 822-828 ◽  
Author(s):  
D. A. Tortorelli

Adjoint and direct differentiation methods are used to formulate design sensitivities for the steady-state response of damped linear elastodynamic systems that are subject to period loads. Variations of a general response functional are expressed in explicit form with respect to design field perturbations. Modal analysis techniques which uncouple the equations of motion are used to perform the analyses. In this way, it is possible to obtain closed form relations for the sensitivity expressions. This eliminates the need to separately evaluate the adjoint response and psuedo response (these responses are associated with the adjoint and direct differentiation sensitivity problems) over the time domain. The sensitivities need not be numerically integrated over time, thus they are quickly computed. The methodology is valid for problems with proportional as well as nonproportional damping. In an example problem, sensitivities of steady-state vibration amplitude of a crankshaft subject to engine firing loads are evaluated with respect to the stiffness, inertial, and damping parameters which define the shaft. Both the adjoint and direct differentiation methods are used to compute the sensitivities. Finite difference sensitivity approximations are also calculated to validate the explicit sensitivity results.


2020 ◽  
pp. 107754632095132
Author(s):  
Saman Bagheri ◽  
Vahid Rahmani-Dabbagh

A special type of a tuned mass damper, which consists of a mass and an elasto-plastic spring without using any viscous damper, is used to reduce the steady-state response of structures to base excitation. Previous work of the authors showed that the elasto-plastic tuned mass damper (P-TMD) could help reduce the seismic responses, and a method based on energy equalization was proposed to design it. In this study, the effectiveness of the P-TMD is investigated under harmonic support motion, and a direct approach is developed to find its optimum parameters. To estimate the nonlinear steady-state response of P-TMD-controlled systems, an analytical framework is established using the Fourier series approximation, which is validated by direct numerical integration of the equations of motion. The obtained results for the optimum P-TMD are discussed and compared with those of the optimum elastic tuned mass damper.


Author(s):  
T. N. Shiau ◽  
E. K. Lee ◽  
Y. C. Chen ◽  
T. H. Young

The paper presents the dynamic behaviors of a geared rotor-bearing system under the effects of the residual shaft bow, the gear eccentricity and excitation of gear’s transmission error. The coupling effect of lateral and torsional motions is considered in the dynamic analysis of the geared rotor-bearing system. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The dynamic characteristics including system natural frequencies, mode shapes and steady-state response are investigated. The results show that the magnitude of the residual shaft bow, the phase angle between gear eccentricity and residual shaft bow will significantly affect system natural frequencies and steady-state response. When the spin speed closes to the second critical speed, the system steady state response will be dramatically increased by the residual shaft bow for the in-phase case. Moreover the zero response can be obtained when the system is set on special conditions.


1974 ◽  
Vol 96 (4) ◽  
pp. 1147-1158 ◽  
Author(s):  
M. A. Dokainish ◽  
J. N. Siddall ◽  
W. Elmaraghy

The steady state response for models of a six-axle locomotive running on a sinusoidally irregular track has been investigated. Two mathematical models have been set up, a full model for the “stationary” vehicle in which creep between wheels and rails was neglected, and a full model for the “moving” vehicle in which creep forces, gravity stiffness effects and wheel tread profiles were considered. The use of the generalized method of complex algebra to obtain the steady state response of the railway vehicle components to varying input frequencies was used. The results given in this paper are for the case of sinusoidal lateral track irregularities only, but the method is general enough to allow also for vertical track irregularities. For the “stationary” vehicle the input frequency is increased from zero to 3 cycles per second. For the “moving” vehicle the input frequency is a function of the track wave length and the vehicle forward speed and is given in terms of the vehicle speed. The frequency response curves are computer plotted in each case. For the “moving” vehicle, responses for the cases of both new and worn wheels are obtained. The natural frequencies for the full model are also calculated. The results obtained show the effect of the creep forces and the condition of the wheels on the steady state response. It is recommended that slip and corresponding creep forces, wheel tread and rail profiles, and the gravity stiffness effect be included in the steady state response analysis of railway vehicles to track irregularities. The analysis may be used to check the response of any proposed design for a railway vehicle to economically attractive track irregularities. It may also be used to adjust geometry, spring rates and damping characteristics in order to maximize operating speeds while providing optimum damping for the trucks and body motions. This paper illustrates and describes the mathematical models used; gives generalized form for the differential equations of motion and the methods of solution. The equations of motion for the wheelsets are derived in detail including the creep forces and the wheel tread profiles.


Sign in / Sign up

Export Citation Format

Share Document