Aerothermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing-Jets—Part I: Flow Field Analysis

2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Alessandro Armellini ◽  
Filippo Coletti ◽  
Tony Arts ◽  
Christophe Scholtes

The present contribution addresses the aerothermal, experimental, and computational studies of a trapezoidal cross-sectional model simulating a trailing edge cooling cavity with one rib-roughened wall. The flow is fed through tilted slots on one side wall and exits through straight slots on the opposite side wall. The flow field aerodynamics is investigated in Part I of the paper. The reference Reynolds number is defined at the entrance of the test section and set at 67,500 for all the experiments. A qualitative flow model is deduced from surface-streamline flow visualizations. Two-dimensional particle image velocimetry measurements are performed in several planes around midspan of the channel and recombined to visualize and quantify three-dimensional flow features. The crossing-jets issued from the tilted slots are characterized and the jet-rib interaction is analyzed. Attention is drawn to the motion of the flow deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained from the finite volume Reynolds-averaged Navier–Stokes solver, CEDRE.

Author(s):  
Alessandro Armellini ◽  
Filippo Coletti ◽  
Tony Arts ◽  
Christophe Scholtes

The present contribution addresses the aero-thermal experimental and computational study of a trapezoidal cross-section model simulating a trailing edge cooling cavity with one rib-roughened wall. The flow is fed through tilted slots on one side wall and exits through straight slots on the opposite side wall. The flow field aerodynamics is investigated in part I of the paper. The reference Reynolds number is defined at the entrance of the test section and set at 67500 for all the experiments. A qualitative flow model is deduced from surface-streamline flow visualizations. Two-dimensional Particle Image Velocimetry measurements are performed in several planes around mid-span of the channel and recombined to visualize and quantify three-dimensional flow features. The jets issued from the tilted slots are characterized and the jet-rib interaction is analyzed. Attention is drawn to the motion of the flow deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained from the finite volume, RANS solver CEDRE.


Author(s):  
Filippo Coletti ◽  
Alessandro Armellini ◽  
Tony Arts ◽  
Christophe Scholtes

The present contribution addresses the aero-thermal experimental and computational study of a trapezoidal cross-section model simulating a trailing edge cooling cavity with one rib-roughened wall and slots along two opposite walls. Highly resolved heat transfer distributions for the geometry with and without ribs are achieved using a steady state liquid crystals method in part II of this paper. The reference Reynolds number, defined at the entrance of the test section, is set at 67500 for all the experiments. Comparisons are made with the flow field visualizations presented in part I of the paper. The results show the dramatic impact of the flow structures on the local and global heat transfer coefficients along the cavity walls. Of particular importance is the jet deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained using the finite volume, Reynolds-Averaged Navier-Stokes solver CEDRE.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Filippo Coletti ◽  
Alessandro Armellini ◽  
Tony Arts ◽  
Christophe Scholtes

The present contribution addresses the aerothermal experimental and computational study of a trapezoidal cross-section model simulating a trailing edge cooling cavity with one rib-roughened wall and slots along two opposite walls. Highly resolved heat transfer distributions for the geometry with and without ribs are achieved using a steady state liquid crystals method in part II of this paper. The reference Reynolds number defined at the entrance of the test section is set at 67,500 for all the experiments. Comparisons are made with the flow field visualizations presented in part I of this paper. The results show the dramatic impact of the flow structures on the local and global heat transfer coefficients along the cavity walls. Of particular importance is the jet deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained using the finite volume, Reynolds-Averaged Navier–Stokes solver Calcul d'Écoulements Diphasiques Réactifs pour l'Énergétique (CEDRE).


Author(s):  
Peng Sun ◽  
Jingjun Zhong ◽  
Guotai Feng

The performance and stability of a fan in clean and distorted inlet flow can be improved through the use of bowed stator blades. Measurements between the blade rows in transonic and supersonic flow are too complex to provide any useful insights, so 3D flow simulations are required. In this paper, a time-accurate three-dimensional Navier-Stokes solver of the unsteady flow field in a transonic fan is carried out using “Fluent-parallel” in a parallel supercomputer. Two sets of simulations are performed. The first simulation focuses on a better understanding of inlet total pressure distortion effects on a transonic fan. The second set of numerical simulation aims at studying the improvements of fan performance made by bowed stator blades. Three aspects are contained in this paper. The first is about the distortion effects on characteristics of the fan stage with straight stator. The effects of bowed stator on fan performance with inlet distortion are demonstrated secondly. One hand bowed stator increases the loss in rotor. On the other hand, it reduces the flow loss in stator. Finally, the patterns of flow loss caused by total pressure distortion with straight/bowed stator are compared. The scale of vortex in stator induced by inlet total pressure distortion is weakened by bowed blades, which decreases the stator loss.


1996 ◽  
Vol 118 (2) ◽  
pp. 291-300 ◽  
Author(s):  
C. H. Sieverding ◽  
T. Arts ◽  
R. De´nos ◽  
F. Martelli

A trailing edge cooled low aspect ratio transonic turbine guide vane is investigated in the VKI Compression Tube Cascade Facility at an outlet Mach number M2, is = 1.05 and a coolant flow rate m˙c/m˙g = 3 percent. The outlet flow field is surveyed by combined total-directional pressure probes and temperature probes. Special emphasis is put on the development of low blockage probes. Additional information is provided by oil flow visualizations and numerical flow visualizations with a three-dimensional Navier–Stokes code. The test results describe the strong differences in the axial evolution of the hub and tip endwall and secondary flows and demonstrate the self-similarity of the midspan wake profiles. According to the total pressure and temperature profiles, the wake mixing appears to be very fast in the near-wake but very slow in the far-wake region. The total pressure wake profile appears to be little affected by the coolant flow ejection.


Author(s):  
C. H. Sieverding ◽  
T. Arts ◽  
R. Dénos ◽  
F. Martelli

A trailing edge cooled low aspect ratio transonic turbine guide vane is investigated in the VKI Compression Tube Cascade Facility at an outlet Mach number M2,i s=1.05 and a coolant flow rate ṁc/ṁg=3%. The outlet flow field is surveyed by combined total-directional pressure probes and temperature probes. Special emphasis is put on the development of low blockage probes. Additional information is provided by oil flow visualizations and numerical flow visualizations with a three-dimensional Navier-Stokes code. The test results describe the strong differences in the axial evolution of the hub and tip endwall and secondary flows and demonstrate the self-similarity of the mid-span wake profiles. According to the total pressure and temperature profiles the wake mixing appears to be very fast in the near-wake but very slow in the far-wake region. The total pressure wake profile appears to be little affected by the coolant flow ejection.


1997 ◽  
Vol 119 (1) ◽  
pp. 122-128 ◽  
Author(s):  
S. L. Puterbaugh ◽  
W. W. Copenhaver

An experimental investigation concerning tip flow field unsteadiness was performed for a high-performance, state-of-the-art transonic compressor rotor. Casing-mounted high frequency response pressure transducers were used to indicate both the ensemble averaged and time varying flow structure present in the tip region of the rotor at four different operating points at design speed. The ensemble averaged information revealed the shock structure as it evolved from a dual shock system at open throttle to an attached shock at peak efficiency to a detached orientation at near stall. Steady three-dimensional Navier Stokes analysis reveals the dominant flow structures in the tip region in support of the ensemble averaged measurements. A tip leakage vortex is evident at all operating points as regions of low static pressure and appears in the same location as the vortex found in the numerical solution. An unsteadiness parameter was calculated to quantify the unsteadiness in the tip cascade plane. In general, regions of peak unsteadiness appear near shocks and in the area interpreted as the shock-tip leakage vortex interaction. Local peaks of unsteadiness appear in mid-passage downstream of the shock-vortex interaction. Flow field features not evident in the ensemble averaged data are examined via a Navier-Stokes solution obtained at the near stall operating point.


2000 ◽  
Vol 124 (1) ◽  
pp. 140-146 ◽  
Author(s):  
V. Schramm ◽  
K. Willenborg ◽  
S. Kim ◽  
S. Wittig

This paper reports numerical predictions and measurements of the flow field in a stepped labyrinth seal. The theoretical work and the experimental investigations were successfully combined to gain a comprehensive understanding of the flow patterns existing in such elements. In order to identify the influence of the honeycomb structure, a smooth stator as well as a seal configuration with a honeycomb facing mounted on the stator wall were investigated. The seal geometry is representative of typical three-step labyrinth seals of modern aero engines. The flow field was predicted using a commercial finite volume code with the standard k-ε turbulence model. The computational grid includes the basic seal geometry as well as the three-dimensional honeycomb structures.


Author(s):  
Brian R. Green ◽  
Randall M. Mathison ◽  
Michael G. Dunn

The effect of rotor purge flow on the unsteady aerodynamics of a high-pressure turbine stage operating at design corrected conditions has been investigated both experimentally and computationally. The experimental configuration consisted of a single-stage high-pressure turbine with a modern film-cooling configuration on the vane airfoil as well as the inner and outer end-wall surfaces. Purge flow was introduced into the cavity located between the high-pressure vane and the high-pressure disk. The high-pressure blades and the downstream low-pressure turbine nozzle row were not cooled. All hardware featured an aerodynamic design typical of a commercial high-pressure ratio turbine, and the flow path geometry was representative of the actual engine hardware. In addition to instrumentation in the main flow path, the stationary and rotating seals of the purge flow cavity were instrumented with high frequency response, flush-mounted pressure transducers and miniature thermocouples to measure flow field parameters above and below the angel wing. Predictions of the time-dependent flow field in the turbine flow path were obtained using FINE/Turbo, a three-dimensional, Reynolds-Averaged Navier-Stokes CFD code that had the capability to perform both steady and unsteady analysis. The steady and unsteady flow fields throughout the turbine were predicted using a three blade-row computational model that incorporated the purge flow cavity between the high-pressure vane and disk. The predictions were performed in an effort to mimic the design process with no adjustment of boundary conditions to better match the experimental data. The time-accurate predictions were generated using the harmonic method. Part I of this paper concentrates on the comparison of the time-averaged and time-accurate predictions with measurements in and around the purge flow cavity. The degree of agreement between the measured and predicted parameters is described in detail, providing confidence in the predictions for flow field analysis that will be provided in Part II.


Sign in / Sign up

Export Citation Format

Share Document