Continuous Collision and Interference Detection for 3D Geometric Models

Author(s):  
Horea T. Ilieş

This paper describes a new approach to perform continuous collision and interference detection between a pair of arbitrarily complex objects moving according to general three-dimensional affine motions. Our approach, which does not require any envelope computations, recasts the problem of detecting collisions and computing the interfering subsets in terms of inherently parallel set membership classification tests of specific curves against the original (static) geometric representations. We show that our approach can compute the subsets of the moving objects that collide and interfere, as well as the times of collision, which has important applications in mechanical design and manufacturing. Our approach can be implemented for any geometric representation that supports curve-solid intersections, such as implicit and parametric representations. We describe an implementation of the proposed technique for solids given as a boundary representation (B-rep), and illustrate its effectiveness for several rigid and deformable moving objects bounded by tesselated and freeform surfaces of various complexities. Furthermore, we show that our approach can be extended to also identify the local and global self-intersections of the envelopes of the moving objects without requiring to compute these envelopes explicitly. The paper concludes by summarizing the proposed approach as well as reviewing relevant computational improvements that can decrease the computational cost of the prototype implementation by orders of magnitude.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 906
Author(s):  
Ivan Bašták Ďurán ◽  
Martin Köhler ◽  
Astrid Eichhorn-Müller ◽  
Vera Maurer ◽  
Juerg Schmidli ◽  
...  

The single-column mode (SCM) of the ICON (ICOsahedral Nonhydrostatic) modeling framework is presented. The primary purpose of the ICON SCM is to use it as a tool for research, model evaluation and development. Thanks to the simplified geometry of the ICON SCM, various aspects of the ICON model, in particular the model physics, can be studied in a well-controlled environment. Additionally, the ICON SCM has a reduced computational cost and a low data storage demand. The ICON SCM can be utilized for idealized cases—several well-established cases are already included—or for semi-realistic cases based on analyses or model forecasts. As the case setup is defined by a single NetCDF file, new cases can be prepared easily by the modification of this file. We demonstrate the usage of the ICON SCM for different idealized cases such as shallow convection, stratocumulus clouds, and radiative transfer. Additionally, the ICON SCM is tested for a semi-realistic case together with an equivalent three-dimensional setup and the large eddy simulation mode of ICON. Such consistent comparisons across the hierarchy of ICON configurations are very helpful for model development. The ICON SCM will be implemented into the operational ICON model and will serve as an additional tool for advancing the development of the ICON model.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yang Yu ◽  
Hongqing Zhu

AbstractDue to the complex morphology and characteristic of retinal vessels, it remains challenging for most of the existing algorithms to accurately detect them. This paper proposes a supervised retinal vessels extraction scheme using constrained-based nonnegative matrix factorization (NMF) and three dimensional (3D) modified attention U-Net architecture. The proposed method detects the retinal vessels by three major steps. First, we perform Gaussian filter and gamma correction on the green channel of retinal images to suppress background noise and adjust the contrast of images. Then, the study develops a new within-class and between-class constrained NMF algorithm to extract neighborhood feature information of every pixel and reduce feature data dimension. By using these constraints, the method can effectively gather similar features within-class and discriminate features between-class to improve feature description ability for each pixel. Next, this study formulates segmentation task as a classification problem and solves it with a more contributing 3D modified attention U-Net as a two-label classifier for reducing computational cost. This proposed network contains an upsampling to raise image resolution before encoding and revert image to its original size with a downsampling after three max-pooling layers. Besides, the attention gate (AG) set in these layers contributes to more accurate segmentation by maintaining details while suppressing noises. Finally, the experimental results on three publicly available datasets DRIVE, STARE, and HRF demonstrate better performance than most existing methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rui Zhai ◽  
Hui Chen ◽  
Zhihua Shan

AbstractElectrochemical modification of animal skin is a new material preparation method and new direction of research exploration. In this study, under the action of the electric field using NaCl as the supporting electrolyte, the effect of electrolysis on Glycyl-glycine(GlyGl), gelatin(Gel) and Three-dimensional rawhide collagen(3DC) were determined. The amino group of GlyGl is quickly eliminated within the anode region by electrolysis isolated by an anion exchange membrane. Using the same method, it was found that the molecular weight of Gel and the isoelectric point of the Gel decreased, and the viscosity and transparency of the Gel solution obviously changed. The electrolytic dissolution and structural changes of 3DC were further investigated. The results of TOC and TN showed that the organic matter in 3DC was dissolved by electrolysis, and the tissue cavitation was obvious. A new approach for the preparation of collagen-based multi-pore biomaterials by electrochemical method was explored.


Vibration ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 49-63
Author(s):  
Waad Subber ◽  
Sayan Ghosh ◽  
Piyush Pandita ◽  
Yiming Zhang ◽  
Liping Wang

Industrial dynamical systems often exhibit multi-scale responses due to material heterogeneity and complex operation conditions. The smallest length-scale of the systems dynamics controls the numerical resolution required to resolve the embedded physics. In practice however, high numerical resolution is only required in a confined region of the domain where fast dynamics or localized material variability is exhibited, whereas a coarser discretization can be sufficient in the rest majority of the domain. Partitioning the complex dynamical system into smaller easier-to-solve problems based on the localized dynamics and material variability can reduce the overall computational cost. The region of interest can be specified based on the localized features of the solution, user interest, and correlation length of the material properties. For problems where a region of interest is not evident, Bayesian inference can provide a feasible solution. In this work, we employ a Bayesian framework to update the prior knowledge of the localized region of interest using measurements of the system response. Once, the region of interest is identified, the localized uncertainty is propagate forward through the computational domain. We demonstrate our framework using numerical experiments on a three-dimensional elastodynamic problem.


Metrika ◽  
2021 ◽  
Author(s):  
Andreas Anastasiou ◽  
Piotr Fryzlewicz

AbstractWe introduce a new approach, called Isolate-Detect (ID), for the consistent estimation of the number and location of multiple generalized change-points in noisy data sequences. Examples of signal changes that ID can deal with are changes in the mean of a piecewise-constant signal and changes, continuous or not, in the linear trend. The number of change-points can increase with the sample size. Our method is based on an isolation technique, which prevents the consideration of intervals that contain more than one change-point. This isolation enhances ID’s accuracy as it allows for detection in the presence of frequent changes of possibly small magnitudes. In ID, model selection is carried out via thresholding, or an information criterion, or SDLL, or a hybrid involving the former two. The hybrid model selection leads to a general method with very good practical performance and minimal parameter choice. In the scenarios tested, ID is at least as accurate as the state-of-the-art methods; most of the times it outperforms them. ID is implemented in the R packages IDetect and breakfast, available from CRAN.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1791
Author(s):  
Chi Cuong Vu ◽  
Thanh Tai Nguyen ◽  
Sangun Kim ◽  
Jooyong Kim

Health monitoring sensors that are attached to clothing are a new trend of the times, especially stretchable sensors for human motion measurements or biological markers. However, price, durability, and performance always are major problems to be addressed and three-dimensional (3D) printing combined with conductive flexible materials (thermoplastic polyurethane) can be an optimal solution. Herein, we evaluate the effects of 3D printing-line directions (45°, 90°, 180°) on the sensor performances. Using fused filament fabrication (FDM) technology, the sensors are created with different print styles for specific purposes. We also discuss some main issues of the stretch sensors from Carbon Nanotube/Thermoplastic Polyurethane (CNT/TPU) and FDM. Our sensor achieves outstanding stability (10,000 cycles) and reliability, which are verified through repeated measurements. Its capability is demonstrated in a real application when detecting finger motion by a sensor-integrated into gloves. This paper is expected to bring contribution to the development of flexible conductive materials—based on 3D printing.


2003 ◽  
Vol 14 (07) ◽  
pp. 945-954 ◽  
Author(s):  
MEHMET DİLAVER ◽  
SEMRA GÜNDÜÇ ◽  
MERAL AYDIN ◽  
YİĞİT GÜNDÜÇ

In this work we have considered the Taylor series expansion of the dynamic scaling relation of the magnetization with respect to small initial magnetization values in order to study the dynamic scaling behavior of two- and three-dimensional Ising models. We have used the literature values of the critical exponents and of the new dynamic exponent x0 to observe the dynamic finite-size scaling behavior of the time evolution of the magnetization during early stages of the Monte Carlo simulation. For the three-dimensional Ising model we have also presented that this method opens the possibility of calculating z and x0 separately. Our results show good agreement with the literature values. Measurements done on lattices with different sizes seem to give very good scaling.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


2013 ◽  
Vol 347-350 ◽  
pp. 3505-3509 ◽  
Author(s):  
Jin Huang ◽  
Wei Dong Jin ◽  
Na Qin

In order to reduce the difficulty of adjusting parameters for the codebook model and the computational complexity of probability distribution for the Gaussian mixture model in intelligent visual surveillance, a moving objects detection algorithm based on three-dimensional Gaussian mixture codebook model using XYZ color model is proposed. In this algorithm, a codebook model based on XYZ color model is built, and then the Gaussian model based on X, Y and Z components in codewords is established respectively. In this way, the characteristic of the three-dimensional Gaussian mixture model for the codebook model is obtained. The experimental results show that the proposed algorithm can attain higher real-time capability and its average frame rate is about 16.7 frames per second, while it is about 8.3 frames per second for the iGMM (improved Gaussian mixture model) algorithm, about 6.1 frames per second for the BM (Bayes model) algorithm, about 12.5 frames per second for the GCBM (Gaussian-based codebook model) algorithm, and about 8.5 frames per second for the CBM (codebook model) algorithm in the comparative experiments. Furthermore the proposed algorithm can obtain better detection quantity.


Sign in / Sign up

Export Citation Format

Share Document