Organotypic spinal cord culture in serum-free fibrin gel: a new approach to study three-dimensional neurite outgrowth and of neurotoxicity testing

1997 ◽  
Vol 78 (1-2) ◽  
pp. 93-103 ◽  
Author(s):  
Harald Rösner ◽  
Gabriele Vacun
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rui Zhai ◽  
Hui Chen ◽  
Zhihua Shan

AbstractElectrochemical modification of animal skin is a new material preparation method and new direction of research exploration. In this study, under the action of the electric field using NaCl as the supporting electrolyte, the effect of electrolysis on Glycyl-glycine(GlyGl), gelatin(Gel) and Three-dimensional rawhide collagen(3DC) were determined. The amino group of GlyGl is quickly eliminated within the anode region by electrolysis isolated by an anion exchange membrane. Using the same method, it was found that the molecular weight of Gel and the isoelectric point of the Gel decreased, and the viscosity and transparency of the Gel solution obviously changed. The electrolytic dissolution and structural changes of 3DC were further investigated. The results of TOC and TN showed that the organic matter in 3DC was dissolved by electrolysis, and the tissue cavitation was obvious. A new approach for the preparation of collagen-based multi-pore biomaterials by electrochemical method was explored.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1872
Author(s):  
Shaowei Guo ◽  
Idan Redenski ◽  
Shulamit Levenberg

Spinal cord injury (SCI) is a debilitating condition, often leading to severe motor, sensory, or autonomic nervous dysfunction. As the holy grail of regenerative medicine, promoting spinal cord tissue regeneration and functional recovery are the fundamental goals. Yet, effective regeneration of injured spinal cord tissues and promotion of functional recovery remain unmet clinical challenges, largely due to the complex pathophysiology of the condition. The transplantation of various cells, either alone or in combination with three-dimensional matrices, has been intensively investigated in preclinical SCI models and clinical trials, holding translational promise. More recently, a new paradigm shift has emerged from cell therapy towards extracellular vesicles as an exciting “cell-free” therapeutic modality. The current review recapitulates recent advances, challenges, and future perspectives of cell-based spinal cord tissue engineering and regeneration strategies.


Author(s):  
Xiaogang Chen ◽  
Lin Zhang ◽  
Fu Hua ◽  
Yu Zhuang ◽  
Huan Liu ◽  
...  

AbstractStudies have found that molecular targets that regulate tissue development are also involved in regulating tissue regeneration. Erythropoietin-producing hepatocyte A4 (EphA4) not only plays a guiding role in neurite outgrowth during the development of the central nervous system (CNS) but also induces injured axon retraction and inhibits axon regeneration after spinal cord injury (SCI). EphA4 targets several ephrin ligands (including ephrin-A and ephrin-B) and is involved in cortical cell migration, axon guidance, synapse formation and astrocyte function. However, how EphA4 affects axon regeneration after SCI remains unclear. This study focuses on the effect and mechanism of EphA4-regulated astrocyte function in neuronal regeneration after SCI. Our research found that EphA4 expression increased significantly after SCI and peaked at 3 days post-injury; accordingly, we identified the cellular localization of EphA4 and ephrin-B ligands in neurons and astrocytes after SCI. EphA4 was mainly expressed on the surface of neurons, ephrin-B1 and ephrin-B3 were mainly localized on astrocytes, and ephrin-B2 was distributed on both neurons and astrocytes. To further elucidate the effect of EphA4 on astrocyte function after SCI, we detected the related cytokines secreted by astrocytes in vivo. We found that the levels of neurotrophic factors including nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) increased significantly after SCI (NGF peaked at 3 days and bFGF peaked at 7 days); the expression of laminin and fibronectin increased gradually after SCI; the expression of inflammatory factors [interleukin (IL)-1β and IL-6] increased significantly from 4 h to 7 days after SCI; and the levels of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation, and chondroitin sulphate proteoglycan (CSPG), the main component of glial scars, both peaked at 7 days after SCI. Using a damaged astrocyte model in vitro, we similarly found that the levels of related cytokines increased after injury. Consequently, we observed the effect of damaged astrocytes on neurite outgrowth and regeneration, and the results showed that damaged astrocytes hindered neurite outgrowth and regeneration; however, the inhibitory effect of injured astrocytes on neurite regeneration was reduced following ephrin-B receptor knockdown or inflammatory inhibition at 24 h after astrocyte injury. Our results showed that EphA4 regulates the secretion of neurotrophic factors, adhesion molecules, inflammatory factors and glial scar formation by binding with the ligand ephrin-B located on the surface of astrocytes. EphA4 affects neurite outgrowth and regeneration after SCI by regulating astrocyte function.


2009 ◽  
Vol 220 (2) ◽  
pp. 303-315 ◽  
Author(s):  
Jose V. Montoya G. ◽  
Jhon Jairo Sutachan ◽  
Wai Si Chan ◽  
Alexandra Sideris ◽  
Thomas J.J. Blanck ◽  
...  

2003 ◽  
Vol 14 (07) ◽  
pp. 945-954 ◽  
Author(s):  
MEHMET DİLAVER ◽  
SEMRA GÜNDÜÇ ◽  
MERAL AYDIN ◽  
YİĞİT GÜNDÜÇ

In this work we have considered the Taylor series expansion of the dynamic scaling relation of the magnetization with respect to small initial magnetization values in order to study the dynamic scaling behavior of two- and three-dimensional Ising models. We have used the literature values of the critical exponents and of the new dynamic exponent x0 to observe the dynamic finite-size scaling behavior of the time evolution of the magnetization during early stages of the Monte Carlo simulation. For the three-dimensional Ising model we have also presented that this method opens the possibility of calculating z and x0 separately. Our results show good agreement with the literature values. Measurements done on lattices with different sizes seem to give very good scaling.


2010 ◽  
Vol 1 (2) ◽  
pp. 179 ◽  
Author(s):  
Myeong Jin Kang ◽  
Tatsuya Yamamoto ◽  
Shoji Shinamura ◽  
Eigo Miyazaki ◽  
Kazuo Takimiya

2011 ◽  
Vol 8 (5) ◽  
pp. 8865-8901
Author(s):  
P. Noel ◽  
A. N. Rousseau ◽  
C. Paniconi

Abstract. Subdivision of catchment into appropriate hydrological units is essential to represent rainfall-runoff processes in hydrological modelling. The commonest units used for this purpose are hillslopes (e.g. Fan and Bras, 1998; Troch et al., 2003). Hillslope width functions can therefore be utilised as one-dimensional representation of three-dimensional landscapes by introducing profile curvatures and plan shapes. An algorithm was developed to delineate and extract hillslopes and hillslope width functions by introducing a new approach to calculate an average profile curvature and plan shape. This allows the algorithm to be independent of digital elevation model resolution and to associate hillslopes to nine elementary landscapes according to Dikau (1989). This algortihm was tested on two flat and steep catchments of the province of Quebec, Canada. Results showed great area coverage for hillslope width function over individual hillslopes and entire watershed.


Sign in / Sign up

Export Citation Format

Share Document