Load Sharing Among Spinal Elements of a Motion Segment in Extension and Lateral Bending

1987 ◽  
Vol 109 (4) ◽  
pp. 291-297 ◽  
Author(s):  
V. K. Goel ◽  
J. M. Winterbottom ◽  
J. N. Weinstein ◽  
Y. E. Kim

A linear optimization model was formulated using a semi-experimental protocol to estimate the forces in the spinal elements of a lumbar motion segment subjected to an extension or lateral bending moment with and without a 120 N compressive preload. A morphometer was used to acquire the three-dimensional locations of the disk center, facet centers and ligament origin and insertion sites with the specimen in a “neutral” position. The relative motion of the superior vertebra, under the loading conditions tested, was monitored using a Selspot II® system. These data allowed the formulation of the static equilibrium equations for the superior vertebra at each of the loading conditions mentioned above. A linear optimization technique was used, along with a suitable cost function, to find an optimum solution for the set of equations and imposed constraints. Results showed that for 6.9 Nm of extension moment, each facet carried a load of 52 N, with the disk carrying an axial tensile load of 104 N. At the 6.9 Nm extension moment coupled with 120 N preload, each facet carried a load of 77.2 N and the disk an axial tensile load of 37 N. In right lateral bending, with and without preload, the load was distributed among the right facet, the disk, the left ligamentum flavum and the left capsular ligament. At the 6.9 Nm load step without preload the right facet carried an axial load of 127.01 N with the disk carrying an axial compressive load of 7.8 N. Ligament forces for this step for the left ligamentum flavum and capsular ligament, respectively, were 61.03 N and 65.14 N. The addition of 120 N of preload reduced the load on the right facet to 83.5 N. The compressive load in the disk increased to 107.5 N. The corresponding ligament forces were 43.2 N (left ligamentum flavum) and 50.7 N (left capsular ligament).

2019 ◽  
Vol 5 (1) ◽  
pp. 347-349
Author(s):  
Martin Weidling ◽  
Christian Voigt ◽  
Toni Wendler ◽  
Martin Heilemann ◽  
Michael Werner ◽  
...  

AbstractThe lumbo-pelvic complex is a highly complex structural system. The current investigation aims to identify the kinematics between interacting bone segments under different loading conditions. A specimen of the lumbo-pelvic complex was obtained from a human body donor and tested in a self-developed test rig. The experimental setup was designed to imitate extension, flexion, right and left lateral bending and axial rotation to the left and to the right, respectively. The vertebra L3 was firmly embedded and load was introduced via hip joints. Using a digital image correlation (DIC) system, the 3D motions of 15 markers at different landmarks were measured for each loadcase under cyclic loading. For each loadcase, the kinematics were analyzed in terms of three-dimensional relative movements between L3 and the sacrum. The usefulness of the experimental technique was demonstrated. It may serve for further biomechanical investigations of relative motion of sacroiliac and vertebral joints and deformation of bony structures.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
S. P. Guleria ◽  
R. K. Dutta

This paper presents the results of effect of inclusion of water, sodium hydroxide and carbon tetrachloride treated tire chips on Compressive load, tensile load, axial strain, diametral strain, toughness index and post peak behaviour of the reference mix containing fly ash + 8% lime + 0.9% gypsum for a curing period varying from 7 to 180 days using three different curing methods. The results of this study revealed that the axial/diametral strain, axial/tensile load of reference mix mixed with dry tyre chip can be increased with the treatment provided on dry tyre chips. The axial/diametral strain, axial/tensile load, toughness index improves with the change in curing method and curing period. Potential use of this relatively new constructional material can be road pavement having light traffic.


2009 ◽  
Vol 79-82 ◽  
pp. 267-270
Author(s):  
Xia Xie ◽  
Ya Ming Jiang ◽  
Ai Fen Xu ◽  
Yong Huang ◽  
Xue Cheng Lu ◽  
...  

The relationship between the axial inserted yarns and the mechanical properties of the multi-angled filament wound pipes was studied by experimental investigation in this paper. Firstly, the glassfiber/epoxy pipes with different process parameters were fabricated on the specially-designed filament winding equipment under varying conditions. Then the specimens were made in terms of standard sizes and tested under axial tensile load and axial compressive load, respectively. Furthermore, the axial tensile strength and the axial compressive strength were obtained from the test data, which showed that the above two values of the specimens with the axial yarns were larger than that without the axial yarns. That is to say, the incorporation of the axial reinforcement was found to result in increased strength.


2018 ◽  
Vol 27 (2) ◽  
pp. 096369351802700 ◽  
Author(s):  
Chuangshi Shen ◽  
Xiaoping Han

The occurrence of fibre crossover and undulation(FCU) is inherent of the filament windingproc ess. However, the study on the effect of FCU on the mechanical performance and failure of filament wound composite(FWC) structure were mainly experimental research. So in this paper, a macro-meso failure analysis model for FWC considering FCU is established based on Puck, Hashin failure criterion and Linde stiffness degradation model. The influence of fibre crossove r and undulation on the stiffness failure is calculated and analyzed. The numerical results show that the strain in FCU region is higher by about 1.07–1.13 times than it in laminate region, the FCU have a certain influence on the failure strength of filament wound composite and the failure position of FWC under axial tensile load and internal pressure is mainly located FCU region and the failure position under axial compressive load is related to the winding angle.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Nicole C. Corbiere ◽  
Kathleen A. Lewicki ◽  
Kathleen A. Issen ◽  
Laurel Kuxhaus

Approximately 50% of women and 25% of men will have an osteoporosis-related fracture after the age of 50, yet the micromechanical origin of these fractures remains unclear. Preventing these fractures requires an understanding of compression fracture formation in vertebral cancellous bone. The immediate research goal was to create clinically relevant (midvertebral body and endplate) fractures in three-vertebrae motion segments subject to physiologically realistic compressional loading conditions. Six three-vertebrae motion segments (five cervine, one cadaver) were potted to ensure physiologic alignment with the compressive load. A 3D microcomputed tomography (microCT) image of each motion segment was generated. The motion segments were then preconditioned and monotonically compressed until failure, as identified by a notable load drop (48–66% of peak load in this study). A second microCT image was then generated. These three-dimensional images of the cancellous bone structure were inspected after loading to qualitatively identify fracture location and type. The microCT images show that the trabeculae in the cervine specimens are oriented similarly to those in the cadaver specimen. In the cervine specimens, the peak load prior to failure is highest for the L4–L6 motion segment, and decreases for each cranially adjacent motion segment. Three motion segments formed endplate fractures and three formed midvertebral body fractures; these two fracture types correspond to clinically observed fracture modes. Examination of normalized-load versus normalized-displacement curves suggests that the size (e.g., cross-sectional area) of a vertebra is not the only factor in the mechanical response in healthy vertebral specimens. Furthermore, these normalized-load versus normalized-displacement data appear to be grouped by the fracture type. Taken together, these results show that (1) the loading protocol creates fractures that appear physiologically realistic in vertebrae, (2) cervine vertebrae fracture similarly to the cadaver specimen under these loading conditions, and (3) that the prefracture load response may predict the impending fracture mode under the loading conditions used in this study.


2011 ◽  
Vol 528 (13-14) ◽  
pp. 4507-4515 ◽  
Author(s):  
Kashif Naseem ◽  
Yanqing Yang ◽  
Xian Luo ◽  
Bin Huang ◽  
Guanghai Feng

2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


2018 ◽  
Vol 15 (148) ◽  
pp. 20180550
Author(s):  
Vahhab Zarei ◽  
Rohit Y. Dhume ◽  
Arin M. Ellingson ◽  
Victor H. Barocas

Due to its high level of innervation, the lumbar facet capsular ligament (FCL) is suspected to play a role in low back pain (LBP). The nociceptors in the lumbar FCL may experience excessive deformation and generate pain signals. As such, understanding the mechanical behaviour of the FCL, as well as that of its underlying nerves, is critical if one hopes to understand its role in LBP. In this work, we constructed a multiscale structure-based finite-element (FE) model of a lumbar FCL on a spinal motion segment undergoing physiological motions of flexion, extension, ipsilateral and contralateral bending, and ipsilateral axial rotation. Our FE model was created for a generic FCL geometry by morphing a previously imaged FCL anatomy onto an existing generic motion segment model. The fibre organization of the FCL in our models was subject-specific based on previous analysis of six dissected specimens. The fibre structures from those specimens were mapped onto the FCL geometry on the motion segment. A motion segment model was used to determine vertebral kinematics under specified spinal loading conditions, providing boundary conditions for the FCL-only multiscale FE model. The solution of the FE model then provided detailed stress and strain fields within the tissue. Lastly, we used this computed strain field and our previous studies of deformation of nerves embedded in fibrous networks during simple deformations (e.g. uniaxial stretch, shear) to estimate the nerve deformation based on the local tissue strain and fibre alignment. Our results show that extension and ipsilateral bending result in largest strains of the lumbar FCL, while contralateral bending and flexion experience lowest strain values. Similar to strain trends, we calculated that the stretch of the microtubules of the nerves, as well as the forces exerted on the nerves' membrane are maximal for extension and ipsilateral bending, but the location within the FCL of peak microtubule stretch differed from that of peak membrane force.


2000 ◽  
Vol 37 (1) ◽  
pp. 56-74 ◽  
Author(s):  
M Hesham El Naggar ◽  
Jin Qi Wei

Tapered piles have a substantial advantage with regard to their load-carrying capacity in the downward frictional mode. The uplift performance of tapered piles, however, has not been fully understood. This paper describes the results of an experimental investigation into the characteristics of the uplift performance of tapered piles. Three instrumented steel piles with different degrees of taper were installed in cohesionless soil and subjected to compressive and tensile load tests. The soil was contained in a steel soil chamber and pressurized using an air bladder to facilitate modelling the confining pressures pertinent to larger embedment depths. The results of this study indicated that the pile axial uplift capacity increased with an increase in the confining pressure for all piles examined in this study. The ratios of uplift to compressive load for tapered piles were less than those for straight piles of the same length and average embedded diameter. The uplift capacity of tapered piles was found to be comparable to that of straight-sided wall piles at higher confining pressure values, suggesting that the performance of actual tapered piles (with greater length) would be comparable to that of straight-sided wall piles. Also, the results indicated that residual stresses developed during the compressive loading phase and their effect were more significant on the initial uplift capacity of piles, and this effect was more pronounced for tapered piles in medium-dense sand.Key words: tapered piles, uplift, axial response, load transfer, experimental modelling.


Author(s):  
Koen Van Minnebruggen ◽  
Stijn Hertelé ◽  
Wim De Waele

The general aim of a recently finalized European project, i.e. EU RFCS SBD-Spipe, is to generate specific know-how concerning the development and possible use of spirally welded pipes for demanding applications. The demanding applications relate especially to structural integrity issues, both onshore and offshore, requiring good performance under application of large strains resulting in buckling, collapse and/or tensile loading. The outcome of this project can also be used as technical basis for improving standards and guidelines, that address design and safety of spirally welded pipelines. The contribution of Ghent University to this project focusses on the aspects of tearing resistance, defect tolerance and strain capacity of girth welded joints subjected to remote axial tensile load. A numerical and experimental approach is used for the assessment of flaw tolerability and strain development upon tensile loading. Spiral pipes of steel grade API-5L X70 with 36” and 48” diameters have been girth welded using both a manual and semi-automatic welding processes. Curved wide plate specimens have been extracted from the pipes and artificial weld defects have been introduced. The specimens have been loaded in tension up to failure at a temperature of −10°C. This paper reports on the experimental result of a series of curved wide plate tests.


Sign in / Sign up

Export Citation Format

Share Document