scholarly journals Tension and Compression Behaviour of Fly Ash-Lime-Gypsum Composite Mixed with Treated Tyre Chips

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
S. P. Guleria ◽  
R. K. Dutta

This paper presents the results of effect of inclusion of water, sodium hydroxide and carbon tetrachloride treated tire chips on Compressive load, tensile load, axial strain, diametral strain, toughness index and post peak behaviour of the reference mix containing fly ash + 8% lime + 0.9% gypsum for a curing period varying from 7 to 180 days using three different curing methods. The results of this study revealed that the axial/diametral strain, axial/tensile load of reference mix mixed with dry tyre chip can be increased with the treatment provided on dry tyre chips. The axial/diametral strain, axial/tensile load, toughness index improves with the change in curing method and curing period. Potential use of this relatively new constructional material can be road pavement having light traffic.

Author(s):  
Stephen Westwood ◽  
Michael Martens ◽  
Richard Kania ◽  
David Topp ◽  
Raymond Kare´ ◽  
...  

The StressProbe is a non-contacting electromagnetic tool that responds to material strain in ferromagnetic materials. Previous studies have concentrated on uni-axial strain measurements; in this study, we extend the scope of work by measuring bi-axial strains on a pipe specimen subject to internal pressure and to a displacement-controlled, axial tensile/compressive load. Specified pressure and load combinations were obtained, and measurements from the StressProbe were compared to those from tri-axial strain gauges installed on the pipe specimen. In this paper, we present the theory behind this measurement method and the results from this study. Also discussed are measurement applications both inside and outside the pipe specimen.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sunthorn Chaitat ◽  
Nattapon Chantarapanich ◽  
Sujin Wanchat

Purpose This paper aims to investigate effect of infill density, fabricated built orientation and dose of gamma radiation to mechanical tensile and compressive properties of polylactic acid (PLA) part fabricated by fused deposit modelling (FDM) technique for medical applications. Design/methodology/approach PLA specimens for tensile and compressive tests were fabricated using FDM machine. The specimens geometry and test method were referred to ASTM D638 and ASTM D695, respectively. Three orientations under consideration were flat, edge and upright, whereas the infill density ranged from 0 to 100%. The gamma radiation dose used to expose to specimens was 25 kGy. The collected data included stress and strain, which was used to find mechanical properties, i.e. yield strength, ultimate tensile strength (UTS), fracture strength, elongation at yield, elongation at UTS and elongation at break. The t-test was used to access the difference in mechanical properties. Findings Compressive mechanical properties is greater than tensile mechanical properties. Increasing number of layer parallel to loading direction and infill density, it enhances the material property. Upright presents the lowest mechanical property in tensile test, but greatest in compressive test. Upright orientation should not be used for part subjecting to tensile load. FDM is more proper for part subjecting to compressive load. FDM part requires undergoing gamma ray for sterilisation, the infill density no less than 70 and 60% should be selected for part subjecting to tensile and compressive load, respectively. Originality/value This study investigated all mechanical properties in both tension and compression as well as exposure to gamma radiation. The results can be applied in selection of FDM parameters for medical device manufacturing.


2009 ◽  
Vol 79-82 ◽  
pp. 267-270
Author(s):  
Xia Xie ◽  
Ya Ming Jiang ◽  
Ai Fen Xu ◽  
Yong Huang ◽  
Xue Cheng Lu ◽  
...  

The relationship between the axial inserted yarns and the mechanical properties of the multi-angled filament wound pipes was studied by experimental investigation in this paper. Firstly, the glassfiber/epoxy pipes with different process parameters were fabricated on the specially-designed filament winding equipment under varying conditions. Then the specimens were made in terms of standard sizes and tested under axial tensile load and axial compressive load, respectively. Furthermore, the axial tensile strength and the axial compressive strength were obtained from the test data, which showed that the above two values of the specimens with the axial yarns were larger than that without the axial yarns. That is to say, the incorporation of the axial reinforcement was found to result in increased strength.


2018 ◽  
Vol 27 (2) ◽  
pp. 096369351802700 ◽  
Author(s):  
Chuangshi Shen ◽  
Xiaoping Han

The occurrence of fibre crossover and undulation(FCU) is inherent of the filament windingproc ess. However, the study on the effect of FCU on the mechanical performance and failure of filament wound composite(FWC) structure were mainly experimental research. So in this paper, a macro-meso failure analysis model for FWC considering FCU is established based on Puck, Hashin failure criterion and Linde stiffness degradation model. The influence of fibre crossove r and undulation on the stiffness failure is calculated and analyzed. The numerical results show that the strain in FCU region is higher by about 1.07–1.13 times than it in laminate region, the FCU have a certain influence on the failure strength of filament wound composite and the failure position of FWC under axial tensile load and internal pressure is mainly located FCU region and the failure position under axial compressive load is related to the winding angle.


1987 ◽  
Vol 109 (4) ◽  
pp. 291-297 ◽  
Author(s):  
V. K. Goel ◽  
J. M. Winterbottom ◽  
J. N. Weinstein ◽  
Y. E. Kim

A linear optimization model was formulated using a semi-experimental protocol to estimate the forces in the spinal elements of a lumbar motion segment subjected to an extension or lateral bending moment with and without a 120 N compressive preload. A morphometer was used to acquire the three-dimensional locations of the disk center, facet centers and ligament origin and insertion sites with the specimen in a “neutral” position. The relative motion of the superior vertebra, under the loading conditions tested, was monitored using a Selspot II® system. These data allowed the formulation of the static equilibrium equations for the superior vertebra at each of the loading conditions mentioned above. A linear optimization technique was used, along with a suitable cost function, to find an optimum solution for the set of equations and imposed constraints. Results showed that for 6.9 Nm of extension moment, each facet carried a load of 52 N, with the disk carrying an axial tensile load of 104 N. At the 6.9 Nm extension moment coupled with 120 N preload, each facet carried a load of 77.2 N and the disk an axial tensile load of 37 N. In right lateral bending, with and without preload, the load was distributed among the right facet, the disk, the left ligamentum flavum and the left capsular ligament. At the 6.9 Nm load step without preload the right facet carried an axial load of 127.01 N with the disk carrying an axial compressive load of 7.8 N. Ligament forces for this step for the left ligamentum flavum and capsular ligament, respectively, were 61.03 N and 65.14 N. The addition of 120 N of preload reduced the load on the right facet to 83.5 N. The compressive load in the disk increased to 107.5 N. The corresponding ligament forces were 43.2 N (left ligamentum flavum) and 50.7 N (left capsular ligament).


2011 ◽  
Vol 528 (13-14) ◽  
pp. 4507-4515 ◽  
Author(s):  
Kashif Naseem ◽  
Yanqing Yang ◽  
Xian Luo ◽  
Bin Huang ◽  
Guanghai Feng

2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


Author(s):  
Mohammed Dahim ◽  
Musab Abuaddous ◽  
Hashem Al-Mattarneh ◽  
Andan Rawashdeh ◽  
Rabah Ismail

2009 ◽  
Vol 79-82 ◽  
pp. 71-74
Author(s):  
Qi Wang ◽  
Lin Qiao ◽  
Peng Song

In this paper, the resistance to H2S attack of pastes made from slag-fly ash blended cement used in oil well (SFAOW) was studied, in which fly ash (FA) was used at replacement dosages of 30% to 60% by weight of slag. Samples of SCOW and SFAOW pastes were demoulded and cured by immersion in fresh water with 2 Mp H2S insulfflation under 130oC for 15 days. After this curing period, compression strength and permeability of the samples were investigated. The reaction mechanisms of H2S with the paste were carried out through a microstructure study, which included the use of x-ray diffraction (XRD) patterns and scanning electron microscope (SEM). Based on the obtained data in this study, incorporation of FA into SCOW results in the comparable effects in the resistance to H2S attack. When the replacement dosage of slag is about 40%, the paste exhibits the best performance on resistance to H2S attack with compression strength 36.58Mp.


Author(s):  
Indrayani Indrayani ◽  
Lina Flaviana Tilik ◽  
Djaka Suhirkam ◽  
Suhadi Suhadi ◽  
Muhammad Prawira Wardana ◽  
...  

Currently, innovation continues to be developed to replace cement with other materials so that the use of cement as a building material can be reduced. Utilization of coal waste (fly ash) is an alternative to subtitude cement. From previous studies, fly ash mixed with alkaline materials in the form of NaOH and Na2SiO3 in a ratio of 1:5 can produce geopolymer concrete. This geopolymer concrete research was continued by adding bendrat wire fibers into the geopolymer concrete mixture. The method used in testing the aggregate, testing the compressive strength of normal concrete K225, testing the flexural strength of normal concrete and geopolymer concrete refers to SNI. Another additional material that is mixed is bendrat wire fiber. The research was carried out in the form of making flexible beams of 10 cm x 10 cm x 50 cm with fiber variations of 0%, 0.5%, and 1,0% at the age of 14 and 28 days. The results of the flexural strength test of the BN beam at the age of 28 days can withstand loads than BG. The average flexural strength obtained with variations of BN, BN+SB 0.5% and BN+SB 1.0% respectively were 2.796 MPa, 3.113 MPa, and 3.879 MPa. The results of testing the average flexural strength of geopolymer concrete beams at 28 days, obtained variations of BG, BG+SB 0.5%, and BG+SB 1.0% respectively were 0 MPa, 0.055 MPa and 0.104 MPa. In addition, geopolymer concrete cannot be used as a beam and the addition of bendrat wire fiber to geopolymer concrete cannot withstand the tensile load on the concrete.


Sign in / Sign up

Export Citation Format

Share Document