Fluid Flow Through a Crack Network in Rocks

1983 ◽  
Vol 50 (4a) ◽  
pp. 707-711 ◽  
Author(s):  
R. Englman ◽  
Y. Gur ◽  
Z. Jaeger

A network of cracks pervading a rock is modeled by a random distribution of two-dimensional intersecting, complex, narrow cracks. The percolation properties of the resulting network are studied as functions of the crack-area density and size of the medium. Gas flow commences at a finite value of the crack density which in Arkansas Novaculite rocks amounts according to our model to 670 cracks per cm2. The mean probability of finding at least one crack intersecting another is 0.57 at the threshold density. Above that, the rock gas-flow permeability increases superlinearly with crack density due to the enhancement of short percolative paths.

2002 ◽  
pp. 337-378 ◽  
Author(s):  
Jozef Telega ◽  
Wlodzimierz Bielski

The aim of this contribution is mainly twofold. First, the stochastic two-scale convergence in the mean developed by Bourgeat et al. [13] is used to derive the macroscopic models of: (i) diffusion in random porous medium, (ii) nonstationary flow of Stokesian fluid through random linear elastic porous medium. Second, the multi-scale convergence method developed by Allaire and Briane [7] for the case of several microperiodic scales is extended to random distribution of heterogeneities characterized by separated scales (stochastic reiterated homogenization). .


Author(s):  
M. Yasep Setiawan ◽  
Wawan Purwanto ◽  
Wanda Afnison ◽  
Nuzul Hidayat

This study discusses the numerical study of two-dimensional analysis of flow through circular cylinders. The original physical information entered in the equation governing most of the modeling is transferred into a numerical solution. Fluid flow on two-dimensional circular cylinder wall using high Reynolds k-ε modeling (Re = 106), Here we will do 3 modeling first oder upwind, second order upwind and third order MUSCL by using k-ε standard.  The general procedure for this research is formulated in detail for allocations in the dynamic analysis of fluid computing. The results of this study suggest that MUSCL's third order modeling gives more accurate results better than other models.


2019 ◽  
Vol 12 (32) ◽  
pp. 1-6
Author(s):  
Abid Ali Memon ◽  
Hisam-uddin Shaikh ◽  
Baqir Ali Shah ◽  
Muhammad Afzal Soomro ◽  
Abdul Ghafoor Shaikh ◽  
...  

2000 ◽  
Author(s):  
A. K. Al-Hadhrami ◽  
L. Elliott ◽  
D. B. Ingham ◽  
X. Wen

Abstract The present analysis is concerned with the study of two-dimensional fluid flow problems through channels of irregular composite materials. The fluid is assumed to be steady, incompressible, with a negligible gravitational force, and is constrained to flow in an infinite long channel in which the height assumes a series of piecewise constant values. An analytical study in the fully developed section of the composite channel is presented when the channel is of constant height and composed of several layers of porous media, each of uniform porosity. Numerical solutions are utilised using CFD based on the control volume method to solve the Brinkman equation, which governs fluid flow through porous media. In the fully developed flow regime the analytical and numerical solutions are graphically indistinguishable. A geometrical configuration involving several discontinuities of channel height, and where the entry and exit sections are layered, is considered and the effect of different permeabilities is demonstrated. Several numerical investigations which form a first attempt to mathematically model some geological structures, e.g. a fault or a fracture, are performed. Further, flow through fractures composed of randomly generated permeability values are also discussed and the effect on the overall pressure gradient is considered.


2002 ◽  
Vol 124 (5) ◽  
pp. 533-537 ◽  
Author(s):  
Ruth S. Ochia ◽  
Randal P. Ching

Hydraulic resistance (HR) was measured for ten intact human lumbar vertebrae to further understand the mechanisms of fluid flow through porous bone. Oil was forced through the vertebral bodies under various volumetric flow rates and the resultant pressure was measured. The pressure-flow relationship for each specimen was linear. Therefore, HR was constant with a mean of 2.22±1.45kPa*sec/ml. The mean permeability of the intact vertebral bodies was 4.90×10−10±4.45×10−10m2. These results indicate that this methodology is valid for whole bone samples and enables the exploration of the effects of HR on the creation of high-speed fractures.


2018 ◽  
Vol 180 ◽  
pp. 02052
Author(s):  
Martin Kyncl ◽  
Jaroslav Pelant

Here we work with the RANS equations describing the non-stationary viscous compressible fluid flow. We focus on the numerical simulation of the flow through the porous media, characterized by the loss of momentum. Further we simulate the flow through the set of diffusible barriers. Here we analyze the modification of the Riemann problem with one-side initial condition, complemented with the Darcy’s law and added inertial loss. We show the computational results obtained with the own-developed code for the solution of the compressible gas flow.


1978 ◽  
Vol 100 (4) ◽  
pp. 525-532 ◽  
Author(s):  
N. F. Rieger ◽  
A. L. Wicks

Experimental results for the nonsteady forces and nonsteady torques acting at the e.g. of an instrumented moving turbine blade have been obtained. Three different turbine stage geometries have been tested in this manner. The data described was obtained using a rotating model turbine stage consisting of a row of stationary inlet nozzles and a rotating blade row. The hydraulic analogy was used to stimulate the two-dimensional gasdynamic flow through the three stage geometries in turn. The free-surface horizontal flow of water across the rotating water table then represents the gas flow through the stage. Results for the nonsteady forces and torques in the tangential, axial, and torsional directions are presented as dimensionless force ratios or dimensionless torque ratios in each instance. Charts of results are presented for various stage pressure ratios, for practical ranges of stage velocity ratios. Typical results and observed trends are discussed in detail, and a summary table of observed nonsteady excitation values is presented.


2020 ◽  
Vol 69 (1) ◽  
Author(s):  
Anle Wang ◽  
Martin H. Müser

Abstract In this work, we numerically study the elastic contact between isotropic and anisotropic, rigid, randomly rough surfaces and linearly elastic counterfaces as well as the subsequent Reynolds flow through the gap between the two contacting solids. We find the percolation threshold to depend on the fluid flow direction when the Peklenik number indicates anisotropy unless the system size clearly exceeds the roll-off wave length parallel to the easy flow direction. A critical contact area near 0.415 is confirmed. Heuristically corrected effective-medium treatments satisfactorily provide Reynolds fluid flow conductances, e.g., for isotropic roughness, we identify accurate closed-form expressions, which only depend on the mean gap and the relative contact area. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document