Rigid Body Collisions

1989 ◽  
Vol 56 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Raymond M. Brach

A general approach is presented for solving the problem of the collision of two rigid bodies at a point. The approach overcomes the difficulties encountered by others on the treatment of contact velocity reversals and negative energy losses. A classical problem is solved; the initial velocities are presumed known and the final velocities unknown. The interaction process between the two bodies is modeled using two coefficients. These are the classical coefficient of restitution, e, and the ratio, μ, of tangential to normal impulses. The latter quantity can be a coefficient of friction as a special case. The paper reveals that these coefficients have a much broader intepretation than previously recognized in the solution of collision problems. The appropriate choice of values for μ is related to the energy loss of the collision. It is shown that μ is bounded by values which correspond to no sliding at separation and conservation of energy. Another bound on μ combined with limits on the coefficient e, provides an overall bound on the energy loss of a collision. Examples from existing mechanics literature are solved to illustrate the significance of the coefficients and their relationship to the energy loss of collisions.

1975 ◽  
Vol 42 (2) ◽  
pp. 440-445 ◽  
Author(s):  
K. H. Hunt ◽  
F. R. E. Crossley

During impact the relative motion of two bodies is often taken to be simply represented as half of a damped sine wave, according to the Kelvin-Voigt model. This is shown to be logically untenable, for it indicates that the bodies must exert tension on one another just before separating. Furthermore, it denotes that the damping energy loss is proportional to the square of the impacting velocity, instead of to its cube, as can be deduced from Goldsmith’s work. A damping term λxnx˙ is here introduced; for a sphere impacting a plate Hertz gives n = 3/2. The Kelvin-Voigt model is shown to be approximated as a special case deducible from this law, and applicable when impacts are absent. Physical experiments have confirmed this postulate.


1998 ◽  
Vol 65 (2) ◽  
pp. 464-469 ◽  
Author(s):  
M. B. Rubin

It is well known that the impulse of the contact force acting during impact of two rigid bodies determines the abrupt change in the motions of the two bodies. Much recent work has been focused on determining a constitutive equation for this impulse which models the complicated phenomena occurring during the actual deformations of the two bodies. The objective of this paper is to discuss a set of physical conditions which impose nontrivial restrictions on general constitutive equations for the impulse. Due to the general nature of these restrictions they can be used to determine the range of validity of various proposals for the impulse. For the general case of three-dimensional impact, the impulse depends on an energetic coefficient of restitution and two angles defining its direction. However, when there are no directional properties of the roughness of the two impacting bodies, it is reasonable to propose a simpler form for the direction of the impulse which depends only on this coefficient of restitution and a single friction angle. An example of impact of two finite spheres is considered which shows that the condition that the two bodies have a tendency to separate after impact imposes nontrivial bounds on this friction angle.


1993 ◽  
Vol 9 (2) ◽  
pp. 124-142 ◽  
Author(s):  
Herbert Hatze

The relationship is investigated between the apparent coefficient of restitution and the losses in preimpact kinetic energy of the ball for tennis rackets whose handles are constrained by various clamping modes. The complete energy balance equation of the racket-ball system is derived, and experimental results involving four test rackets are then used to evaluate the various components of the total energy loss for the standardized hand-held mode and the vice-clamping mode. Results demonstrate that the apparent coefficient of restitution is not, as previously thought, independent of the clamping mode but varies significantly with the constraining condition applied to the handle, and with the preimpact velocity of the ball. The relative energy losses in the strings are comparatively small, whereas the losses in the ball increase exponentially with the magnitude of the impulse. The major part of the total loss in kinetic energy of the impacting ball is due to the spatial postimpact recoil motion and internal vibrations of the racket frame.


Author(s):  
Peter Mann

This chapter discusses the importance of circular motion and rotations, whose applications to chemical systems are plentiful. Circular motion is the book’s first example of a special case of motion using the laws developed in previous chapters. The chapter begins with the basic definitions of circular motion; as uniform rotation around a principle axis is much easier to consider, it is the focus of this chapter and is used to develop some key ideas. The chapter discusses angular displacement, angular velocity, angular momentum, torque, rigid bodies, orbital and spin momenta, inertia tensors and non-inertial frames and explores fictitious forces as well as transformations in rotating frames.


1885 ◽  
Vol 176 ◽  
pp. 307-342 ◽  

1. The tendency to apply dynamical principles and methods to explain physical phenomena has steadily increased ever since the discovery of the principle of the Conservation of Energy. This discovery called attention to the ready conversion of the energy of visible motion into such apparently dissimilar things as heat and electric currents, and led almost irresistibly to the conclusion that these too are forms of kinetic energy, though the moving bodies must be infinitesimally small in comparison with the bodies which form the moving pieces of any of the structures or machines with which we are acquainted. As soon as this conception of heat and electricity was reached mathematicians began to apply to them the dynamical method of the Con­servation of Energy, and many physical phenomena were shown to be related to each other, and others predicted by the use of this principle; thus, to take an example, the induction of electric currents by a moving magnet was shown by von Helmholtz to be a necessary consequence of the fact that an electric current produces a magnetic field. Of late years things have been carried still further; thus Sir William Thomson in many of his later papers, and especially in his address to the British Association at Montreal on “Steps towards a Kinetic Theory of Matter,” has devoted a good deal of attention to the description of machines capable of producing effects analogous to some physical phenomenon, such, for example, as the rotation of the plane of polarisation of light by quartz and other crystals. For these reasons the view (which we owe to the principle of the Conservation of Energy) that every physical phenomenon admits of a dynamical explanation is one that will hardly be questioned at the present time. We may look on the matter (including, if necessary, the ether) which plays a part in any physical phenomenon as forming a material system and study the dynamics of this system by means of any of the methods which we apply to the ordinary systems in the Dynamics of Rigid Bodies. As we do not know much about the structure of the systems we can only hope to obtain useful results by using methods which do not require an exact knowledge of the mechanism of the system. The method of the Conservation of Energy is such a method, but there are others which hardly require a greater knowledge of the structure of the system and yet are capable of giving us more definite information than that principle when used in the ordinary way. Lagrange's equations and Hamilton's method of Varying Action are methods of this kind, and it is the object of this paper to apply these methods to study the transformations of some of the forms of energy, and to show how useful they are for coordinating results of very different kinds as well as for suggesting new phenomena. A good many of the results which we shall get have been or can be got by the use of the ordinary principle of Thermodynamics, and it is obvious that this principle must have close relations with any method based on considerations about energy. Lagrange’s equations were used with great success by Maxwell in his ‘Treatise on Electricity and Magnetism,’ vol. ii., chaps. 6, 7, 8, to find the equations of the electromagnetic field.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Raja R. Katta ◽  
Andreas A. Polycarpou ◽  
Jorge V. Hanchi ◽  
Robert M. Crone

With the increased use of hard disk drives (HDDs) in mobile and consumer applications combined with the requirement of higher areal density, there is enhanced focus on reducing head disk spacing, and consequently there is higher susceptibility of slider/disk impact damage during HDD operation. To investigate this impact process, a dynamic elastic-plastic finite element model of a sphere (representing a slider corner) obliquely impacting a thin-film disk was created to study the effect of the slider corner radius and the impact velocity on critical contact parameters. To characterize the energy losses due to the operational shock impact damage, the coefficient of restitution for oblique elastic-plastic impact was studied using the finite element model. A modification to an existing physics-based elastic-plastic oblique impact coefficient of restitution model was proposed to accurately predict the energy losses for a rigid sphere impacting a half-space. The analytical model results compared favorably to the finite element results for the range from low impact angles (primarily normal impacts) to high impact angles (primarily tangential impacts).


Author(s):  
Huashu Dou

The flow losses in the veneless diffusers of centrifugal compressors is investigated. It is found that the total energy loss in vaneless diffusers is a function of Bsin2 α0 when inlet flow conditions and radius ratio between inlet and outlet are given. A wall friction coefficient equation is derived and a method of predicting the total energy loss excepting mixing loss is presented. A comparison is made between results obtained from this method and experimental data generated by the author as well as data from the literature. Good agreement is obtained.


Author(s):  
Carlo Innocenti

Abstract The paper presents an original analytic procedure for unambiguously determining the relative position and orientation (location) of two rigid bodies based on the readings from seven linear transducers. Each transducer connects two points arbitrarily chosen on the two bodies. The sought-for rigid-body location simply results by solving linear equations. The proposed procedure is suitable for implementation in control of fully-parallel manipulators with general geometry. A numerical example shows application of the reported results to a case study.


1967 ◽  
Vol 45 (12) ◽  
pp. 4039-4051 ◽  
Author(s):  
L. Hastings ◽  
A. van Wijngaarden

Local regions on the surface of ZnO:Zn phosphor samples were deteriorated by a large number of low-energy ions. In this manner thin films which did not luminesce under ion bombardment were prepared. The phosphor samples were then scanned across energetic ion beams with sufficient energy to traverse the thin phosphor films. By comparing the luminescent response to this ion excitation in the damaged and undamaged portions of the phosphor surface, the total average energy losses of 1H, 4He, 14N, 40Ar, and 84Kr in passing through the films were determined. It was found that the energy losses for the heavier projectiles, when compared with the energy loss of hydrogen, are appreciably smaller than the energy losses predicted by the Lindhard and Scharff theory.The deterioration depth of the phosphor under prolonged bombardment is proportional to the speed of the damaging projectiles.


1996 ◽  
Vol 11 (11) ◽  
pp. 2876-2883 ◽  
Author(s):  
J. H. Liang ◽  
K. Y. Liao

A set of simple and accurate formulae for the first four moments of nuclear and electronic energy losses is proposed. A new variable is introduced to include the finite maximum-impact-parameter effect in the nuclear stopping process, which is assumed to be infinite in most studies. A critical energy at which the electronic energy loss is equal to the nuclear energy loss is also defined. It determines whether the nuclear or the electronic stopping process is the dominant mechanism in terms of incident-ion energy. The critical energy increases for heavy ions implanted in heavy target materials during the first moment of energy loss. The second moment of electronic energy loss is important only for light ions implanted at high ion energies. The third and fourth moments of nuclear energy loss are much larger than those of the electronic energy loss for all ion-target combinations. Theoretical predications of the projected ranges and range stragglings for gold ions implanted in carbon films are close to the experimental data when these proposed four moments of nuclear and electronic energy losses are considered.


Sign in / Sign up

Export Citation Format

Share Document