How to Model a Bonded Joint

1989 ◽  
Vol 56 (3) ◽  
pp. 590-594 ◽  
Author(s):  
Piero Villaggio

The problem is considered of a semi-infinite plane region bonded to a rigid region, with the boundary of contact being in the shape of a cosine curve. It is shown that, when a rigid displacement is applied to the boundary of the elastic region, there is a particular value of the amplitude of the contact curve that minimizes the sum of the strain energy and adhesion energy.

Author(s):  
J. W. Matthews ◽  
W. M. Stobbs

Many high-angle grain boundaries in cubic crystals are thought to be either coincidence boundaries (1) or coincidence boundaries to which grain boundary dislocations have been added (1,2). Calculations of the arrangement of atoms inside coincidence boundaries suggest that the coincidence lattice will usually not be continuous across a coincidence boundary (3). There will usually be a rigid displacement of the lattice on one side of the boundary relative to that on the other. This displacement gives rise to a stacking fault in the coincidence lattice.Recently, Pond (4) and Smith (5) have measured the lattice displacement at coincidence boundaries in aluminum. We have developed (6) an alternative to the measuring technique used by them, and have used it to find two of the three components of the displacement at {112} lateral twin boundaries in gold. This paper describes our method and presents a brief account of the results we have obtained.


Author(s):  
S.R. Summerfelt ◽  
C.B. Carter

The wustite-spinel interface can be viewed as a model interface because the wustite and spinel can share a common f.c.c. oxygen sublattice such that only the cations distribution changes on crossing the interface. In this study, the interface has been formed by a solid state reaction involving either external or internal oxidation. In systems with very small lattice misfit, very large particles (>lμm) with coherent interfaces have been observed. Previously, the wustite-spinel interface had been observed to facet on {111} planes for MgFe2C4 and along {100} planes for MgAl2C4 and MgCr2O4, the spinel then grows preferentially in the <001> direction. Reasons for these experimental observations have been discussed by Henriksen and Kingery by considering the strain energy. The point-defect chemistry of such solid state reactions has been examined by Schmalzried. Although MgO has been the principal matrix material examined, others such as NiO have also been studied.


1997 ◽  
Vol 473 ◽  
Author(s):  
Michael Lane ◽  
Robert Ware ◽  
Steven Voss ◽  
Qing Ma ◽  
Harry Fujimoto ◽  
...  

ABSTRACTProgressive (or time dependent) debonding of interfaces poses serious problems in interconnect structures involving multilayer thin films stacks. The existence of such subcriticai debonding associated with environmentally assisted crack-growth processes is examined for a TiN/SiO2 interface commonly encountered in interconnect structures. The rate of debond extension is found to be sensitive to the mechanical driving force as well as the interface morphology, chemistry, and yielding of adjacent ductile layers. In order to investigate the effect of interconnect structure, particularly the effect of an adjacent ductile Al-Cu layer, on subcriticai debonding along the TiN/SiO2 interface, a set of samples was prepared with Al-Cu layer thicknesses varying from 0.2–4.0 μm. All other processing conditions remained the same over the entire sample run. Results showed that for a given crack growth velocity, the debond driving force scaled with Al-Cu layer thickness. Normalizing the data by the critical adhesion energy allowed a universal subcriticai debond rate curve to be derived.


2014 ◽  
Vol 42 (1) ◽  
pp. 16-34 ◽  
Author(s):  
Ali E. Kubba ◽  
Mohammad Behroozi ◽  
Oluremi A. Olatunbosun ◽  
Carl Anthony ◽  
Kyle Jiang

ABSTRACT This paper presents an evaluation study of the feasibility of harvesting energy from rolling tire deformation and using it to supply a tire monitoring device installed within the tire cavity. The developed technique is simulated by using a flexible piezoelectric fiber composite transducer (PFC) adhered onto the tire inner liner acting as the energy harvesting element for tire monitoring systems. The PFC element generates electric charge when strain is applied to it. Tire cyclic deformation, particularly at the contact patch surface due to rolling conditions, can be exploited to harvest energy. Finite element simulations, using Abaqus package, were employed to estimate the available strain energy within the tire structure in order to select the optimum location for the PFC element. Experimental tests were carried out by using an evaluation kit for the energy harvesting element installed within the tire cavity to examine the PFC performance under controlled speed and loading conditions.


1977 ◽  
Vol 5 (2) ◽  
pp. 102-118 ◽  
Author(s):  
H. Kaga ◽  
K. Okamoto ◽  
Y. Tozawa

Abstract An analysis by the finite element method and a related computer program is presented for an axisymmetric solid under asymmetric loads. Calculations are carried out on displacements and internal stresses and strains of a radial tire loaded on a road wheel of 600-mm diameter, a road wheel of 1707-mm diameter, and a flat plate. Agreement between calculated and experimental displacements and cord forces is quite satisfactory. The principal shear strain concentrates at the belt edge, and the strain energy increases with decreasing drum diameter. Tire temperature measurements show that the strain energy in the tire is closely related to the internal temperature rise.


Author(s):  
David J. Steigmann

This chapter covers the notion of hyperelasticity—the concept that stress is derived from a strain—energy function–by invoking an analogy between elastic materials and springs. Alternatively, it can be derived by invoking a work inequality; the notion that work is required to effect a cyclic motion of the material.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1928 ◽  
Author(s):  
Faham Tahmasebinia ◽  
Chengguo Zhang ◽  
Ismet Canbulat ◽  
Samad Sepasgozar ◽  
Serkan Saydam

Coal burst occurrences are affected by a range of mining and geological factors. Excessive slipping between the strata layers may release a considerable amount of strain energy, which can be destructive. A competent strata is also more vulnerable to riveting a large amount of strain energy. If the stored energy in the rigid roof reaches a certain level, it will be released suddenly which can create a serious dynamic reaction leading to coal burst incidents. In this paper, a new damage model based on the modified thermomechanical continuum constitutive model in coal mass and the contact layers between the rock and coal mass is proposed. The original continuum constitutive model was initially developed for the cemented granular materials. The application of the modified continuum constitutive model is the key aspect to understand the momentum energy between the coal–rock interactions. The transformed energy between the coal mass and different strata layers will be analytically demonstrated as a function of the rock/joint quality interaction conditions. The failure and post failure in the coal mass and coal–rock joint interaction will be classified by the coal mass crushing, coal–rock interaction damage and fragment reorganisation. The outcomes of this paper will help to forecast the possibility of the coal burst occurrence based on the interaction between the coal mass and the strata layers in a coal mine.


Sign in / Sign up

Export Citation Format

Share Document