A Depletion Strategy for an Active Bottom-Water Drive Reservoir Using Analytical and Numerical Models—Field Case Study

2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Ibrahim Sami Nashawi ◽  
Ealian H. Al-Anzi ◽  
Yousef S. Hashem

Water coning is one of the most serious problems encountered in active bottom-water drive reservoir. It increases the cost of production operations, reduces the efficiency of the depletion mechanism, and decreases the overall oil recovery. Therefore, preventive measures to curtail water coning damaging effects should be well delineated at the early stages of reservoir depletion. Production rate, mobility ratio, well completion design, and reservoir anisotropy are few of the major parameters influencing and promoting water coning. The objective of this paper is to develop a depletion strategy for an active bottom-water drive reservoir that would improve oil recovery, reduce water production due to coning, delay water breakthrough time, and pre-identify wells that are candidates to excessive water production. The proposed depletion strategy does not only take into consideration the reservoir conditions, but also the currently available surface production facilities and future development plan. Analytical methods are first used to obtain preliminary estimates of critical production rate and water breakthrough time, then comprehensive numerical investigation of the relevant parameters affecting water coning behavior is conducted using a single well 3D radial reservoir simulation model.

2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Anietie Okon ◽  
Dulu Appah ◽  
Julius Akpabio

In the Niger Delta, available correlations to predict water breakthrough time in thin oil rim reservoirs are based on generic reservoir models and/or experimental design approach. This approach had not considered the heterogeneity of the reservoir. Thus, the prediction of these available correlations for thin oil rim reservoirs in the Niger Delta is in doubt, considering the sensitive nature of developing thin oil rim reservoirs. Then, a correlation for water breakthrough time (tbt) was developed based on integrated reservoir model of thin oil rim reservoir in the Niger Delta. The obtained result indicated that the developed correlation predicted 1652.72 days compared to the actual Oilfield breakthrough time of 1653 days (about 4.53 years). Also, sensitivity study showed that the developed correlation and the integrated reservoir model predictions of oil production rate (qo), fractional well penetration (hp/h) and height above perforation-oil column (hap/h) on the water breakthrough time (tbt) were close and resulted in coefficient of determination (R2) of 0.9697, 0.8597 and 0.9553, respectively. Furthermore, the results depicted that water coning breakthrough time (tbt) depends directly on oil production rate (q) and well completion parameters: fractional well penetration (hp/h) and height above perforation (hap). Hence, to delay early water breakthrough in thin oil rim reservoirs, these completion parameters are consideration in vertical wells to achieve optimum oil recovery. Also, the developed correlation can be used as a quick and robust tool to predict water breakthrough time of thin oil rim reservoirs in the Niger Delta.


2021 ◽  
Vol 5 (1) ◽  
pp. 119-131
Author(s):  
Frzan F. Ali ◽  
Maha R. Hamoudi ◽  
Akram H. Abdul Wahab

Water coning is the biggest production problem mechanism in Middle East oil fields, especially in the Kurdistan Region of Iraq. When water production starts to increase, the costs of operations increase. Water production from the coning phenomena results in a reduction in recovery factor from the reservoir. Understanding the key factors impacting this problem can lead to the implementation of efficient methods to prevent and mitigate water coning. The rate of success of any method relies mainly on the ability to identify the mechanism causing the water coning. This is because several reservoir parameters can affect water coning in both homogenous and heterogeneous reservoirs. The objective of this research is to identify the parameters contributing to water coning in both homogenous and heterogeneous reservoirs. A simulation model was created to demonstrate water coning in a single- vertical well in a radial cross-section model in a commercial reservoir simulator. The sensitivity analysis was conducted on a variety of properties separately for both homogenous and heterogeneous reservoirs. The results were categorized by time to water breakthrough, oil production rate and water oil ratio. The results of the simulation work led to a number of conclusions. Firstly, production rate, perforation interval thickness and perforation depth are the most effective parameters on water coning. Secondly, time of water breakthrough is not an adequate indicator on the economic performance of the well, as the water cut is also important. Thirdly, natural fractures have significant contribution on water coning, which leads to less oil production at the end of production time when compared to a conventional reservoir with similar properties.


2021 ◽  
Author(s):  
Pongpak Taksaudom ◽  
Tim Kelly ◽  
Atisuda Meeteerawat ◽  
David Carter ◽  
Kannappan Swaminathan ◽  
...  

Abstract Wassana oil field is located in the Gulf of Thailand with shallow water depth at approximately 60m. A major challenge is excessive water production which reduces reserves recovery and increases costs associated with produced water handling. The target reservoir is ~20ft thick with active aquifer support. The low oil/ water mobility ratio due to high oil viscosity (≥ 30cp) risks early water coning and high watercuts. All horizontal wells drilled in the Wassana field during the initial development and the first infill campaign were completed as non-ICD openhole standalone screen. For the second infill campaign, the non-ICD simulation showed water breakthrough occurring at the start of production. Once breakthrough occurs, water production rapidly dominates production prompting premature shut-in of production, leaving much unrecovered oil behind. To overcome this problem, Autonomous Inflow Control Devices (AICDs) were introduced to control the production influx profile across the entire horizontal section to delay water coning and to significantly choke back water production when it occurs. With intensive pre-drilled AICD modeling using 3D dynamic time lapse simulation, two wells in the second infill campaign were subsequently chosen to be completed with a configuration of zonal AICDs isolated by swell packers. This design enables isolation across horizontal reservoir section with high water production in tandem with compartmentalization across the contrasting permeability region. Once water breakthrough occurs, the unique autonomous ability of the cyclonic AICD is triggered by exploiting the physics of rotational flow of the vortex-inducing pressure drop principle through a restrictive funnel-type flow-path in a tool with no moving parts. The low viscosity of both water and gas phase promotes higher rotational velocity inducing higher pressure drop or back-pressure of inflow vortex breakdown towards the inlet into the tubing flow, thus helping to further reduce the influx contribution of the high water producing sections. Essentially, the higher watercut zones flowing through the device is restricted more rigorously compared to the oil-prone zones. Both wells were successfully drilled and completed with AICDs in February 2019. Based on actual and early-production history-matched performance, these 2 pilot AICD wells are projecting an improved cumulative oil production gain of up to +7% over 5 years of production. The reduction or delay of water production can benefit the field both in enhancing oil recovery and water handling cost saving.


2013 ◽  
Vol 734-737 ◽  
pp. 1480-1483 ◽  
Author(s):  
Wu Yi Shan ◽  
Xue Zhang

When horizontal wells are used to exploit reservoir with bottom water, oil wells water breakthrough prematurely due to water coning, water-free oil recovery is reduced. The reason of the formation of horizontal well water cone is analyzed. Then analysis of the mechanism using balanced screen pipe to inhibit bottom water coning in horizontal well is completed. According to the existing screen pipe size, screen configuration is optimized. Horizontal section pressure distribution is controlled by the balanced screen pipe, and then flow of horizontal well sections is adjusted. Bottom water coning speed of all well sections is controlled. An example is calculated by the software which established and the result shows that optimization method can improve water-free oil recovery.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yahui Li ◽  
Haitao Li ◽  
Ying Li

During the exploitation of bottom water oil reservoir, bottom water coning influences the breakthrough of bottom water significantly. Because water cut rises quickly after the breakthrough of bottom water, measures should be taken before the breakthrough to postpone production period without water, thus improving oil recovery. So accurate prediction of water coning profile and breakthrough time is very essential. Through mathematical derivation, this paper proposed a prediction method of bottom water coning profile and bottom water breakthrough time in bottom water reservoir without barrier. Based on theory of fluids flow in porous media, this paper assumes that the flow models are plane radial flow in opened intervals and spherical radial flow in unopened intervals. Further, factors of fluid viscosity, irreducible water saturation, residual oil saturation, and oil-water contact (OWC) movement are also taken into account. Compared with other prediction equations, this method achieves more precise bottom water breakthrough time, and the relative deviation is only 1.14 percent.


2016 ◽  
Author(s):  
Pranav Dubey ◽  
Adrian Okpere ◽  
Gideon Sanni ◽  
Ifeanyi Onyeukwu

ABSTRACT An optimized completion design that addresses gaps in the existing single well Producer-Injector (P-I) concept is presented in this paper. Field development scenarios based on the optimized P-I concept and conventional waterflood were implemented in full-field 3D simulation models. Detailed review of the existing single P-I well concept revealed gaps in the completion design with regards to feasibility of data acquisition, ease of well intervention and well safety/control. The existing design utilizes a Single-String-Single (SSS) design with through-tubing water injection and oil production through annulus, whilst the optimized design is a Two-String-Dual (TSD) incorporating the flexibility of independent injection/production, zonal isolation for interventions & data acquisition and additional safety completion jewelries. A fit-for-purpose reservoir candidate was selected by assessing it's suitability to waterflooding. The reservoir belongs to the paralic sequence of the Agbada Formation of the Niger Delta basin – a sequence of interbedded sandstones and shales. The reservoir is an elongated anticline bounded by W-E oriented faults and exhibiting channelized shoreface sediments. Porosity and permeability ranges are 17-31% and 200mD-2200mD respectively. Shale baffles strongly reduces the influence of the aquifer hence the simulation model is an oil reservoir with weak aquifer completed by the P-I well producing oil and injecting into the aquifer in tandem. Performance of the single P-I well strategy was benchmarked against conventional waterflood patterns to effectively capture the recovery efficiency and production forecast for each scenario. Results from the five-parameter experimental design based on the P-I strategy, indicate Ultimate Oil Recovery is most impacted by horizontal permeability; injection rate, flow barrier transmissibility and vertical permeability with the least influence. Dynamic 3D water saturation maps show the waterflood front propagating principally in the horizontal direction from the injector, providing important reservoir boundary pressure support and minimizing the chance for injected water short-circuiting at the sandface. Ultimate Oil Recovery of 5spot/line drive patterns and the P-I strategy were similar, 54% and 52% respectively. Well completion costs and forecasts were fed into simple economics spreadsheet to test which technique provides the most value. Open book economics results showed the P-I concept provides better value (NPV 23.0 and VIR 0.67) than 5 spot and line drive patterns (NPV-17 and VIR-0.14).


2011 ◽  
Author(s):  
Qinghui Zhang ◽  
XiangFang Li ◽  
Zhaojie Song ◽  
Bicheng Yan ◽  
Bangtang Yin ◽  
...  

2019 ◽  
Vol 42 (2) ◽  
pp. 51-57
Author(s):  
Ariel Paramastya ◽  
Steven Chandra ◽  
Wijoyo Niti Daton ◽  
Sudjati Rachmat

Economic optimization of an oil and gas project is an obligation that has to be done to increase overall profi t, whether the fi eld is still economically feas ible or the fi eld has surpassed its economic limit. In this case, a marginal fi eld waschosen for the study. In this marginal fi eld EOR methods have been used to boost the production rate. However, a full scale EOR method might not be profi table due to the amount of resources that is required to do it. Alternatively, Huff and Puff method is an EOR technique that is reasonable in the scope of single well. The Huff and Puff method is an EOR method where a single well serves as both a producer and an injector. The technique of Huff and Puff: (1) The well isinjected with designed injection fl uid, (2) the well is shut to let the fl uid to soak in the reservoir for some time, and (3) the well is opened and reservoir fl uids are allowed to be produced. The injection fl uid (in this case, nano surfactant) is hypothesized to reduce interfacial tension between the oil and rock, thus improving the oil recovery. In this study, the application of Huff and Puff method using Nanoparticles (NPs) as the injected fl uid, as a method of improving oil recovery is presented in a case study of a fi eld in South Sumatra. The study resulted that said method yields an optimum Incremental Oil Production (IOP) in which the economic aspect gain more profi t, and therefore it is considered feasible to be applied in the fi eld.


2021 ◽  
Author(s):  
Yong Yang ◽  
Xiaodong Li ◽  
Changwei Sun ◽  
Yuanzhi Liu ◽  
Renkai Jiang ◽  
...  

Abstract The problem of water production in carbonate reservoir is always a worldwide problem; meanwhile, in heavy oil reservoir with bottom water, rapid water breakthrough or high water cut is the development feature of this kind of reservoir; the problem of high water production in infill wells in old reservoir area is very common. Each of these three kinds of problems is difficult to be tackled for oilfield developers. When these three kinds of problems occur in a well, the difficulty of water shutoff can be imagined. Excessive water production will not only reduce the oil rate of wells, but also increase the cost of water treatment, and even lead to well shut in. Therefore, how to solve the problem of produced water from infill wells in old area of heavy oil reservoir with bottom water in carbonate rock will be the focus of this paper. This paper elaborates the application of continuous pack-off particles with ICD screen (CPI) technology in infill wells newly put into production in brown field of Liuhua, South China Sea. Liuhua oilfield is a biohermal limestone heavy oil reservoir with strong bottom water. At present, the recovery is only 11%, and the comprehensive water cut is as high as 96%. Excessive water production greatly reduces the hydrocarbon production of the oil well, which makes the production of the oilfield decrease rapidly. In order to delay the decline of oil production, Liuhua oilfield has adopted the mainstream water shutoff technology, including chemical and mechanical water shutoff methods. The application results show that the adaptability of mainstream water shutoff technology in Liuhua oilfield needs to be improved. Although CPI has achieved good water shutoff effect in the development and old wells in block 3 of Liuhua oilfield, there is no application case in the old area of Liuhua oilfield which has been developed for decades, so the application effect is still unclear. At present, the average water cut of new infill wells in the old area reaches 80% when commissioned and rises rapidly to more than 90% one month later. Considering that there is more remaining oil distribution in the old area of Liuhua oilfield and the obvious effect of CPI in block 3, it is decided to apply CPI in infill well X of old area for well completion. CPI is based on the ICD screen radial high-speed fluid containment and pack-off particles in the wellbore annulus to prevent fluid channeling axially, thus achieving well bore water shutoff and oil enhancement. As for the application in fractured reef limestone reservoir, the CPI not only has the function of wellbore water shutoff, but also fills the continuous pack-off particles into the natural fractures in the formation, so as to achieve dual water shutoff in wellbore and fractures, and further enhance the effect of water shutoff and oil enhancement. The target well X is located in the old area of Liuhua oilfield, which is a new infill well in the old area. This target well with three kinds of water problems has great risk of rapid water breakthrough. Since 2010, 7 infill wells have been put into operation in this area, and the water cut after commissioning is 68.5%~92.6%. The average water cut is 85.11% and the average oil rate is 930.92 BPD. After CPI completion in well X, the water cut is only 26% (1/3 of offset wells) and the oil rate is 1300BPD (39.6% higher than that of offset wells). The target well has achieved remarkable effect of reducing water and increasing oil. In addition, in the actual construction process, a total of 47.4m3 particles were pumped into the well, which is equivalent to 2.3 times of the theoretical volume of the annulus between the screen and the borehole wall. Among them, 20m3 continuous pack-off particles entered the annulus, and 27.4m3 continuous pack-off particles entered the natural fractures in the formation. Through the analysis of CPI completed wells in Liuhua oilfield, it is found out that the overfilling quantity is positively correlated to the effect of water shutoff and oil enhancement.


Sign in / Sign up

Export Citation Format

Share Document