ResQuake: A Tele-Operative Rescue Robot

2009 ◽  
Vol 131 (8) ◽  
Author(s):  
S. Ali A. Moosavian ◽  
Arash Kalantari ◽  
Hesam Semsarilar ◽  
Ehsan Aboosaeedan ◽  
Ehsan Mihankhah

The design procedure of ResQuake as a tele-operative rescue robot and its dynamics analysis, manufacturing procedure, control system, and slip estimation for performance improvement are discussed. First, the general task to be performed by the robot is defined, and various mechanisms to form the basic structure of the robot are discussed. Choosing the appropriate mechanisms, geometric dimensions, and mass properties are detailed to develop kinematic and dynamic models for the system. Next, the strength of each component is analyzed to finalize its shape, and the mechanism models are presented. Then, the control system is briefly described, which includes the operator’s PC as the master processor, and the laptop installed on the robot as the slave processor. Finally, slip coefficients of tracks are identified and validated by experimental tests to improve the system tracking performance. ResQuake has participated with distinction in several rescue robot leagues.

1999 ◽  
Vol 39 (4) ◽  
pp. 221-231
Author(s):  
A. H. Lobbrecht

The properties of main water ways and infrastructure of rural water systems are often determined by very general design methods. These methods are based on standards that use only little information of the actual water system. Most design methods applied in the Netherlands are based on land use and soil texture. Standards have been developed on the basis of generalized properties of water systems. Details of the actual layout of the water system and the way in which that system is controlled, are usually not incorporated. Present-day dynamic simulation programs and the computer power currently available enable more detailed modeling and incorporation of location-specific data into models. Such models can be used to design the water system and can include real data. A model-based design method is introduced, in which the actual situation of the water system is taken into consideration as well as the way in which the water system is controlled. Stochastics concerning the operation and availability of controlling infrastructure are included in the method. Models can be evaluated by including real data. In this way the actual safety of the water system, for example during floods, can be determined. Water-quantity design criteria can be incorporated as well as water-quality criteria. Application of the method makes it possible to design safe water systems in which excess capacities are avoided and in which all requirements of interest are met. The method, called the ‘dynamic design procedure’, can result in considerable savings for water authorities when new systems have to be designed or existing designs have to be reconsidered.


2012 ◽  
Vol 619 ◽  
pp. 302-305
Author(s):  
Hong Yan Wang ◽  
Wen Sheng Xiao ◽  
Xiu Juan Lin ◽  
Xian Feng Wang

Considering the pollution on the environment using dynamite source in oil and gas exploration, harm and damage to people and building, the vehicle mounted hammer source which can replace dynamite source is presented. This paper describes briefly the basic structure and working principles of the vehicle mounted hammer source. A typical pneumatic circuit is researched and designed. And the pneumatic circuit is designed with the powerful functions of PLC, the hardware and software design are introduced. The system has advantages of strong striking force, high velocity, small gas consumption, simple structure and convenient control.


2010 ◽  
Vol 136 ◽  
pp. 153-157
Author(s):  
Yu Hong Du ◽  
Xiu Ming Jiang ◽  
Xiu Ren Li

To solve the problem of detecting the permeability of the textile machinery, a dedicated test system has been developed based on the pressure difference measuring method. The established system has a number of advantages including simple, fast and accurate. The mathematical model of influencing factors for permeability is derived based on fluid theory, and the relationship of these parameters is achieved. Further investigations are directed towards the inherent characteristics of the control system. Based on the established model and measuring features, an information fusion based clustering control system is proposed to implement the measurement. Using this mechanical structure, a PID control system and a cluster control system have been developed. Simulation and experimental tests are carried out to examine the performance of the established system. It is noted that the clustering method has a high dynamic performance and control accuracy. This cluster fusion control method has been successfully utilized in powder metallurgy collar permeability testing.


2017 ◽  
Author(s):  
◽  
Jiamin Wang

The Spherical Wheeled Robot (Ball-Bot) is a family of robots that can maintain balance standing on a ball and use it as its wheel to move around. In recent years, there have been several successful Ball-Bot designs. We attempt to develop a new spherical wheeled robot product named "Q-Baller" to study its dynamics and control system. The Q-Baller has been designed to ahieve the economic and effective prototyping. A detailed dynamic model of the mechatronic system has been established and analyzed. Control studies have been conducted based on the dynamic models, and new control methods has been proposed to realize continuous gain scheduling. Exclusive simulations have been performed to test the performance of the controllers and reference planning. The Q-Baller hardware has been prototyped and functional. Robotic circuit board, human machine interface and embedded control system have also been developed to make up the full robotic system. The Q-Baller prototype will be tested after the system is fully adjusted, and further researches in control and robotics will be conducted in the future.


Author(s):  
Meng Fu ◽  
Jianghong Li ◽  
Yafeng Wu ◽  
Shubiao Song ◽  
Aiqi Zhao ◽  
...  

In drilling field, drill-strings stick-slip vibration is a common phenomenon and may lead to a series of drilling accidents. In order to improve drilling efficiency, this paper commits to study a new control system to suppress the undesired stick-slip vibration. In this work, a two degrees of freedom lumped parameter model is established to imitate the drill-strings. A state observer is proposed to estimate the unknown drill-strings states. A reference governor is put forward to optimize drilling parameters. In addition, in order to enhance the anti-interference ability of the closed-loop system, a torque feed forward is introduced into the control system. Based on the state observer and the reference governor, a state feedback and torque feed forward combined controller is designed. The simulation results indicate preliminarily that the designed state feedback and torque feed forward controller, compared with the drilling industry PI controller, has better dynamic performance and stronger ability to eliminate the drill-strings stick-slip vibration. Finally, the control system is applied in the drilling field. The experimental tests demonstrate that the designed controller can effectively suppress the drill-strings stick-slip vibration.


2012 ◽  
Vol 472-475 ◽  
pp. 1473-1476
Author(s):  
Jia Sun ◽  
Yu Hou Wu ◽  
Nan Xiao

Abstract. This paper investigates leveling control system of suspended access platform using an observer-based controller. Uncertain linear systems for leveling control are derived and represented in terms of a set of matrix inequalities. In the system, all state variables needn’t be measured; the perturbations of leveling control are assumed to be described by structural uncertainties. The stiff problem is avoided since the design procedure is independent of the small parameter. The control problem can be effectively solved by the proposed iterative linear matrix inequality approach. The convergence of the algorithms is also studied. Furthermore, a numerical example and simulation results are given to illustrate the effectiveness of proposed method.


2010 ◽  
Vol 44-47 ◽  
pp. 1355-1359 ◽  
Author(s):  
Xiang Xu ◽  
Zhi Xiong Li ◽  
Hong Ling Qin

Since electro-hydraulic servo system has fast response and highest control accuracy, it has been widely used in industrial application, including aircraft, mining, manufacturing, and agriculture, etc. With the fast development of computer science, it is feasible and available to evaluate the performance of the designed control system via virtual simulation before the practical usage of the system. In order to optimize the design procedure of the electro-hydraulic proportional controller, the co-simulation design method based on AMESim-Matlab is presented for the electro-hydraulic servo system in this paper. High accuracy of the mathematical model of electro-hydraulic servo system was full-fitted by the use of AMESim, and the advantage of high solving precision for large amount of calculation was full played using Matlab. The PID controller was employed to realize the efficient control of the motion of the hydraulic cylinder. The united simulation technique was adopted to verify the good performance of the designed control system. The simulation results suggest that the proposed method is effective for the design of electro-hydraulic servo systems and thus has application importance.


1972 ◽  
Vol 94 (1) ◽  
pp. 5-10 ◽  
Author(s):  
C. Nachtigal

The analysis of machine tool chatter from frequency domain considerations is generally accepted as a valid representation of the regenerative chatter phenomenon. However, active control of regenerative chatter is still in its embryonic stage. It was established in reference [2] that a measurement of the cutting force could be effectively used in conjunction with a controller and a tool position servo system to increase the stability of an engine lathe and to improve its transient response. This paper presents the design basis for such a system, including both analytical and experimental considerations. The design procedure stems from a real part stability criterion based on the work by Merritt [1]. Because of the unknown variability in the dynamics of a machine tool system, the controller parameters were chosen to accomodate some mismatch between structure and tool servo dynamics. Experimental tests to determine the stability zone of the controlled machine tool system qualitatively confirmed the analytical design results. The experimental results were consistent in that the transient response tests confirmed the frequency domain stability tests. It was also demonstrated experimentally that the equivalent static stiffness of a flexible work-piece system could be substantially increased.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vivian Suzano Medeiros ◽  
Alan Conci Kubrusly ◽  
Raphael Lydia Bertoche ◽  
Miguel Andrade Freitas ◽  
Claudio Camerini ◽  
...  

Purpose The inspection of flexible risers is a critical activity to ensure continuous productivity and safety in oil and gas production. The purpose of this paper is to present the design and development of a novel automatic underwater tool for riser inspection that fits the most commonly used riser diameters and significantly improves inspection quality and reduces its operating costs. Design/methodology/approach The mechanical and electronic design of the inspection system is discussed, as well as its embedded sensors and control system. The tool is equipped with a suspension system that is able to adapt to the riser diameter and negotiate obstacles on the pipe wall. Numerical simulations were carried out to analyze the mechanical design, and a hardware-in-the-loop simulation was developed for tuning the control system. Further, experimental results are presented and discussed. Findings Experimental tests in laboratory tanks and shallow seawater have confirmed the effectiveness of the tool for detailed real-time inspection of underwater pipelines. Practical implications The use of the proposed tool will potentially reduce the time and costs for riser inspection, currently performed by divers or high-cost ROVs. Originality/value The authors present a reliable tool able to perform automatic inspections up to 250 m deep in less than 30 min, equipped with a high-definition visual inspection system, composed of full-HD cameras and lasers and a suspension mechanism that can negotiate sharp obstacles in the pipe wall up to 25 mm high. The tool uses a comprehensive control system that autonomously performs a full inspection, collecting sensors data and returning safely to the surface. Its robust design can be used as basis for several other nondestructive techniques, such as ultrasound and X-ray.


Sign in / Sign up

Export Citation Format

Share Document