Process-Induced Residual Thermal Stresses in Advanced Fiber-Reinforced Composite Laminates

1984 ◽  
Vol 106 (1) ◽  
pp. 48-54 ◽  
Author(s):  
R. J. Stango ◽  
S. S. Wang

A study of process-induced stresses in advanced fiber-reinforced composite laminates is presented. An analysis of the residual thermal stresses is conducted on the basis of laminate thermoelasticity theory in conjunction with a quasi-three-dimensional finite element method. Formulation of the numerical method is briefly outlined in the paper. To illustrate the fundamental nature of the problem, numerical examples for a quasi-isotropic [0 deg/90 deg/ ± 45 deg]s graphite-epoxy composite system are presented. Complex three-dimensional stress states of significant magnitude are reported. Emphasis is placed on the interlaminar stress distributions along ply interfaces. Effects of laminate stacking sequence on the residual thermal stresses are examined in detail. Implications of the results on deformation and failure of composite laminates are discussed.

1992 ◽  
Vol 114 (4) ◽  
pp. 416-421 ◽  
Author(s):  
F. Gordaninejad

In this study it is demonstrated that thermal conductivities of polymeric fiber-reinforced composite materials can be enhanced by using coated fibers and by adding thermally conductive microspheres to the resin. Two and three-dimensional finite element unit cell models are developed to predict the directional thermal conductivities. The analyses are based on the flash pulse method. It is found that the thermal conductivities in the longitudinal and the transverse directions are highly dependent on the fiber and microsphere volume fractions as well as on the thermal conductivities of fiber, microsphere, and coatings. It is shown that the 2-D analysis is a good approximation for the 3-D model. Close agreements among analytical, finite element and experimental results are obtained.


Author(s):  
Liang Li ◽  
Purong Jia ◽  
Wenge Pan

Experimental and numerical investigations were carried out to study the temperature effect on the stiffness, strength, and failure behaviors of carbon/polyimide composite laminates. Both unnotched laminates and open-hole laminates were tested under tension load at three temperatures (room temperature, 200 ℃, and 250 ℃). A three-dimensional finite element analysis was carried out to study the thermomechanical coupling behavior in the notched laminate. The model considers each layer and interface as a single element in the thickness direction so that in-plane stress and interlaminar stress could be analyzed in the model. The stresses around the open-hole changing characteristics with the temperature and tensile loading have been discussed in detail. Failure analysis was carried out to predict the residual strength of the notched laminates at different temperatures. Compared to the experimental data, the numerical results have an excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document