Modified Brayton Cycles Utilizing Alcohol Fuels

1982 ◽  
Vol 104 (2) ◽  
pp. 341-348 ◽  
Author(s):  
M. F. Bardon

It is already well known that alcohols can be burned in open-cycle gas turbines by direct firing in the combustor. This paper demonstrates however, that there are significant improvements in thermal efficiency possible by modifying the manner in which alcohols are used in Brayton cycle engines. It is shown that injection of the alcohol during the compression process can materially improve both thermal efficiency and specific work because of the intercooling effect of evaporation. Calculations are given which demonstrate the improvement theoretically possible at representative values of peak turbine inlet temperature. It is also shown that the optimum pressure ratio for both regenerated and unregenerated cycles is different when such compressor evaporative intercooling is used rather than simply injecting the fuel into the combustor.

Author(s):  
Hideto Moritsuka

In order to estimate the possibility to improve thermal efficiency of power generation use gas turbine combined cycle power generation system, benefits of employing the advanced gas turbine technologies proposed here have been made clear based on the recently developed 1500C-class steam cooling gas turbine and 1300C-class reheat cycle gas turbine combined cycle power generation systems. In addition, methane reforming cooling method and NO reducing catalytic reheater are proposed. Based on these findings, the Maximized efficiency Optimized Reheat cycle Innovative Gas Turbine Combined cycle (MORITC) Power Generation System with the most effective combination of advanced technologies and the new devices have been proposed. In case of the proposed reheat cycle gas turbine with pressure ratio being 55, the high pressure turbine inlet temperature being 1700C, the low pressure turbine inlet temperature being 800C, combined with the ultra super critical pressure, double reheat type heat recovery Rankine cycle, the thermal efficiency of combined cycle are expected approximately 66.7% (LHV, generator end).


1974 ◽  
Author(s):  
V. V. Uvarov ◽  
V. S. Beknev ◽  
E. A. Manushin

There are two different approaches to develop the gas turbines for power. One can get some megawatts by simple cycle or by more complex cycle units. Both units require very different levels of turbine inlet temperature and pressure ratio for the same unit capacity. Both approaches are discussed. These two approaches lead to different size and efficiencies of gas turbine units for power. Some features of the designing problems of such units are discussed.


Author(s):  
P. Esna Ashari ◽  
V. Nayyeri ◽  
K. Sarabchee

Many factories in industry such as petrochemical plants, oil refineries and power plants need heat and power to support their process. This demand can be provided by a combined heat and power cycle (CHP) in the factory site. Some factories use gas turbine cycle to provide heat and power. Emissions from gas turbines, produced by burning fossil fuels in the combustion chambers, have important effects on air pollution. This is a significant problem in many developed and developing countries. Parameters such as inlet temperature and pressure ratio are the most effective parameters in gas turbine emission. By selecting an appropriate gas turbine, emission could be reduced to some extent. Further studies indicate that there is an optimum pressure ratio, which minimizes emissions.


1980 ◽  
Vol 102 (4) ◽  
pp. 957-963 ◽  
Author(s):  
H. Hempel ◽  
R. Friedrich ◽  
S. Wittig

Extending data obtained from hot gas cascade measurements on the cooling effectiveness and profile loss coefficients of full coverage film-cooled blading, use is made of similarity considerations to determine the heat transfer characteristics under actual engine conditions. Of primary interest are stationary gas turbines. Calculations are made for a four-stage single shaft gas turbine with air preheat and common component efficiencies. As a representative result it is found that for a pressure ratio of π = 10 a relative cooling air flow of approximately 8 percent will be required in rising the temperature from 1173 to 1573 K. The resulting relative improvement of the thermal efficiency is 24 percent and that of the specific work about 70 percent.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chao Deng ◽  
Ahmed N. Abdalla ◽  
Thamir K. Ibrahim ◽  
MingXin Jiang ◽  
Ahmed T. Al-Sammarraie ◽  
...  

In this article, the adaptive neuro-fuzzy inference system (ANFIS) and multiconfiguration gas-turbines are used to predict the optimal gas-turbine operating parameters. The principle formulations of gas-turbine configurations with various operating conditions are introduced in detail. The effects of different parameters have been analyzed to select the optimum gas-turbine configuration. The adopted ANFIS model has five inputs, namely, isentropic turbine efficiency (Teff), isentropic compressor efficiency (Ceff), ambient temperature (T1), pressure ratio (rp), and turbine inlet temperature (TIT), as well as three outputs, fuel consumption, power output, and thermal efficiency. Both actual reported information, from Baiji Gas-Turbines of Iraq, and simulated data were utilized with the ANFIS model. The results show that, at an isentropic compressor efficiency of 100% and turbine inlet temperature of 1900 K, the peak thermal efficiency amounts to 63% and 375 MW of power resulted, which was the peak value of the power output. Furthermore, at an isentropic compressor efficiency of 100% and a pressure ratio of 30, a peak specific fuel consumption amount of 0.033 kg/kWh was obtained. The predicted results reveal that the proposed model determines the operating conditions that strongly influence the performance of the gas-turbine. In addition, the predicted results of the simulated regenerative gas-turbine (RGT) and ANFIS model were satisfactory compared to that of the foregoing Baiji Gas-Turbines.


2021 ◽  
Vol 24 (3) ◽  
pp. 14-20
Author(s):  
Fajri Vidian ◽  
◽  
Putra Anugrah Peranginangin ◽  
Muhamad Yulianto ◽  
◽  
...  

Leaf waste has the potential to be converted into energy because of its high availability both in the world and Indonesia. Gasification is a conversion technology that can be used to convert leaves into producer gas. This gas can be used for various applications, one of which is using it as fuel for gas turbines, including ultra-micro gas ones, which are among the most popular micro generators of electric power at the time. To minimize the risk of failure in the experiment and cost, simulation is used. To simulate the performance of gas turbines, the thermodynamic analysis tool called Cycle-Tempo is used. In this study, Cycle-Tempo was used for the zero-dimensional thermodynamic simulation of an ultra-micro gas turbine operated using producer gas as fuel. Our research contributions are the simulation of an ultra-micro gas turbine at a lower power output of about 1 kWe and the use of producer gas from leaf waste gasification as fuel in a gas turbine. The aim of the simulation is to determine the influence of air-fuel ratio on compressor power, turbine power, generator power, thermal efficiency, turbine inlet temperature and turbine outlet temperature. The simulation was carried out on condition that the fuel flow rate of 0.005 kg/s is constant, the maximum air flow rate is 0.02705 kg/s, and the air-fuel ratio is in the range of 1.55 to 5.41. The leaf waste gasification was simulated before, by using an equilibrium constant to get the composition of producer gas. The producer gas that was used as fuel had the following molar fractions: about 22.62% of CO, 18.98% of H2, 3.28% of CH4, 10.67% of CO2 and 44.4% of N2. The simulation results show that an increase in air-fuel ratio resulted in turbine power increase from 1.23 kW to 1.94 kW. The generator power, thermal efficiency, turbine inlet temperature and turbine outlet temperature decreased respectively from 0.89 kWe to 0.77 kWe; 3.17% to 2.76%; 782 °C to 379 °C and 705°C to 304 °C. The maximums of the generator power and thermal efficiency of 0.89 kWe and 3.17%, respectively, were obtained at the 1.55 air-fuel ratio. The generator power and thermal efficiency are 0.8 kWe and 2.88%, respectively, with the 4.64 air-fuel ratio or 200% excess air. The result of the simulation matches that of the experiment described in the literature.


2018 ◽  
Vol 35 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Antonios Fatsis

Abstract Wave rotors are rotating equipment designed to exchange energy between high and low enthalpy fluids by means of unsteady pressure waves. In turbomachinery, they can be used as topping devices to gas turbines aiming to improve performance. The integration of a wave rotor into a ground power unit is far more attractive than into an aeronautical application, since it is not accompanied by any inconvenience concerning the over-weight and extra dimensioning. Two are the most common types of ground industrial gas turbines: The one-shaft and the two-shaft engines. Cycle analysis for both types of gas turbine engines topped with a four-port wave rotor is calculated and their performance is compared to the performance of the baseline engine accordingly. It is concluded that important benefits are obtained in terms of specific work and specific fuel consumption, especially compared to baseline engines with low compressor pressure ratio and low turbine inlet temperature.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


Author(s):  
Vyacheslav V. Romanov ◽  
Sergey N. Movchan ◽  
Vladimir N. Chobenko ◽  
Oleg S. Kucherenko ◽  
Valeriy V. Kuznetsov ◽  
...  

Adding an exhaust gas heat recovery system to a gas turbine (GT) increases its overall power output and efficiency. The introduction of an Air Heat Recovery Turbine Unit (AHRTU) using air as the heat-transfer agent is one of the ways of this increasing. This article presents the results of a GT with AHRTU for a turbine inlet temperature range from 573K to 873K and a compressor pressure ratio from 2.5 to 12. Main component performance of the AHRTU, weight and size are determined and optimized to match gas turbines. The potential for use of GT with AHRTU is specified. Exhaust gas heat recovery using a GT with AHRTU enable 4%–6% increases in efficiency (absolute), and 12%–20% increases in power output of mechanical drive plants.


Author(s):  
Venkat E. Tangirala ◽  
Narendra D. Joshi

The Pulse Detonation Combustor (PDC) has recently evoked much interest as a pressure-gain combustor for use in gas turbines. A key application for a Pulse Detonation Engine (PDE) concept has been envisioned as a hybrid power generation engine, which would replace the combustor in a conventional gas turbine with a PDC. Estimations of performance parameters, namely, thermal efficiency (ηth) and specific work (Wnet) are reported for a PDC based hybrid engine for various configurations of the engine. The performance enhancing configurations of the PDC-based hybrid engine, considered in the present study, include simple cycle, intercooling, regeneration and reheat, similar to the configurations for a conventional gas turbine (GT) engine in the literature. The performance estimations for a conventional gas turbine engine and a PDC based hybrid engine are compared for the same operating conditions (such as inlet pressure, inlet temperature, compression ratio, overall equivalence ratio) and for various configurations. The thermal efficiency of an intercooled PDC hybrid engine with regeneration has the highest value for the entire range of turbine pressure ratios, from 1.2 to 40 (corresponding to a compression ratio range of 1 to 30). An intercooled PDC based hybrid engine with reheat produces the highest specific work (Wnet) when compared to all other configurations. Among simple-cycle /regeneration /reheat configurations of a PDC based hybrid engine, ητh for the intercooled PDC based hybrid engines has the highest estimated value (0.47) at a turbine pressure ratio of 30. The intercooled PDC based hybrid engine also produces the highest specific work (Wnet) when compared to simple-cycle/regeneration/reheat hybrid engine configurations over the entire range of turbine pressure ratios.


Sign in / Sign up

Export Citation Format

Share Document