scholarly journals 100s and 1000s Mw Open and Semi-Closed Cycle Gas Turbines for Base and Peak Operation

1974 ◽  
Author(s):  
V. V. Uvarov ◽  
V. S. Beknev ◽  
E. A. Manushin

There are two different approaches to develop the gas turbines for power. One can get some megawatts by simple cycle or by more complex cycle units. Both units require very different levels of turbine inlet temperature and pressure ratio for the same unit capacity. Both approaches are discussed. These two approaches lead to different size and efficiencies of gas turbine units for power. Some features of the designing problems of such units are discussed.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chao Deng ◽  
Ahmed N. Abdalla ◽  
Thamir K. Ibrahim ◽  
MingXin Jiang ◽  
Ahmed T. Al-Sammarraie ◽  
...  

In this article, the adaptive neuro-fuzzy inference system (ANFIS) and multiconfiguration gas-turbines are used to predict the optimal gas-turbine operating parameters. The principle formulations of gas-turbine configurations with various operating conditions are introduced in detail. The effects of different parameters have been analyzed to select the optimum gas-turbine configuration. The adopted ANFIS model has five inputs, namely, isentropic turbine efficiency (Teff), isentropic compressor efficiency (Ceff), ambient temperature (T1), pressure ratio (rp), and turbine inlet temperature (TIT), as well as three outputs, fuel consumption, power output, and thermal efficiency. Both actual reported information, from Baiji Gas-Turbines of Iraq, and simulated data were utilized with the ANFIS model. The results show that, at an isentropic compressor efficiency of 100% and turbine inlet temperature of 1900 K, the peak thermal efficiency amounts to 63% and 375 MW of power resulted, which was the peak value of the power output. Furthermore, at an isentropic compressor efficiency of 100% and a pressure ratio of 30, a peak specific fuel consumption amount of 0.033 kg/kWh was obtained. The predicted results reveal that the proposed model determines the operating conditions that strongly influence the performance of the gas-turbine. In addition, the predicted results of the simulated regenerative gas-turbine (RGT) and ANFIS model were satisfactory compared to that of the foregoing Baiji Gas-Turbines.


Author(s):  
A. F. Massardo ◽  
M. Scialò

The thermoeconomic analysis of gas turbine based cycles is presented and discussed in this paper. The thermoeconomic analysis has been performed using the ThermoEconomic Modular Program (TEMP V.5.0) developed by the Authors (Agazzani and Massardo, 1997). The modular structure of the code allows the thermoeconomic analysis for different scenarios (turbine inlet temperature, pressure ratio, fuel cost, installation costs, operating hours per year, etc.) of a large number of advanced gas turbine cycles to be obtained in a fast and reliable way. The simple cycle configuration results have been used to assess the cost functions and coefficient values. The results obtained for advanced gas turbine based cycles (intercooled, re-heated, regenerated and their combinations) are presented using new and useful representations: cost vs. efficiency, cost vs. specific work, and cost vs. pressure ratio. The results, including productive diagram configurations, are discussed in detail and compared to one another.


2000 ◽  
Vol 122 (4) ◽  
pp. 664-671 ◽  
Author(s):  
A. F. Massardo ◽  
M. Scialo`

The thermoeconomic analysis of gas turbine based cycles is presented and discussed in this paper. The thermoeconomic analysis has been performed using the ThermoEconomic Modular Program (TEMP V.5.0) developed by Agazzani and Massardo (1997). The modular structure of the code allows the thermoeconomic analysis for different scenarios (turbine inlet temperature, pressure ratio, fuel cost, installation costs, operating hours per year, etc.) of a large number of advanced gas turbine cycles to be obtained in a fast and reliable way. The simple cycle configuration results have been used to assess the cost functions and coefficient values. The results obtained for advanced gas turbine based cycles (inter-cooled, re-heated, regenerated and their combinations) are presented using new and useful representations: cost versus efficiency, cost versus specific work, and cost versus pressure ratio. The results, including productive diagram configurations, are discussed in detail and compared to one another. [S0742-4795(00)01903-7]


2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis

When selecting a design for an unmanned aerial vehicle, the choice of the propulsion system is vital in terms of mission requirements, sustainability, usability, noise, controllability, reliability and technology readiness level (TRL). This study analyses the various propulsion systems used in unmanned aerial vehicles (UAVs), paying particular focus on the closed-cycle propulsion systems. The study also investigates the feasibility of using helium closed-cycle gas turbines for UAV propulsion, highlighting the merits and demerits of helium closed-cycle gas turbines. Some of the advantages mentioned include high payload, low noise and high altitude mission ability; while the major drawbacks include a heat sink, nuclear hazard radiation and the shield weight. A preliminary assessment of the cycle showed that a pressure ratio of 4, turbine entry temperature (TET) of 800 °C and mass flow of 50 kg/s could be used to achieve a lightweight helium closed-cycle gas turbine design for UAV mission considering component design constraints.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Author(s):  
K. Sarabchi ◽  
A. Ansari

Cogeneration is a simultaneous production of heat and electricity in a single plant using the same primary energy. Usage of a cogeneration system leads to fuel energy saving as well as air pollution reduction. A gas turbine cogeneration plant (GTCP) has found many applications in industries and institutions. Although fuel cost is usually reduced in a cogeneration system but the selection of a system for a given site optimally involves detailed thermodynamic and economical investigations. In this paper the performance of a GTCP was investigated and an approach was developed to determine the optimum size of the plant to meet the electricity and heat demands of a given site. A computer code, based on this approach, was developed and it can also be used to examine the effect of key parameters like pressure ratio, turbine inlet temperature, utilization period, and fuel cost on the economics of GTCP.


Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


Author(s):  
H. C. Eatock ◽  
M. D. Stoten

United Aircraft Corporation studied the potential costs of various possible gas turbine engines which might be used to reduce automobile exhaust emissions. As part of that study, United Aircraft of Canada undertook the preliminary design and performance analysis of high-pressure-ratio nonregenerated (simple cycle) gas turbine engines. For the first time, high levels of single-stage component efficiency are available extending from a pressure ratio less than 4 up to 10 or 12 to 1. As a result, the study showed that the simple-cycle engine may provide satisfactory running costs with significantly lower manufacturing costs and NOx emissions than a regenerated engine. In this paper some features of the preliminary design of both single-shaft and a free power turbine version of this engine are examined. The major component technology assumptions, in particular the high pressure ratio centrifugal compressor, employed for performance extrapolation are explained and compared with current technology. The potential low NOx emissions of the simple-cycle gas turbine compared to regenerative or recuperative gas turbines is discussed. Finally, some of the problems which might be encountered in using this totally different power plant for the conventional automobile are identified.


Author(s):  
Hideto Moritsuka

In order to estimate the possibility to improve thermal efficiency of power generation use gas turbine combined cycle power generation system, benefits of employing the advanced gas turbine technologies proposed here have been made clear based on the recently developed 1500C-class steam cooling gas turbine and 1300C-class reheat cycle gas turbine combined cycle power generation systems. In addition, methane reforming cooling method and NO reducing catalytic reheater are proposed. Based on these findings, the Maximized efficiency Optimized Reheat cycle Innovative Gas Turbine Combined cycle (MORITC) Power Generation System with the most effective combination of advanced technologies and the new devices have been proposed. In case of the proposed reheat cycle gas turbine with pressure ratio being 55, the high pressure turbine inlet temperature being 1700C, the low pressure turbine inlet temperature being 800C, combined with the ultra super critical pressure, double reheat type heat recovery Rankine cycle, the thermal efficiency of combined cycle are expected approximately 66.7% (LHV, generator end).


Author(s):  
Raik C. Orbay ◽  
Magnus Genrup ◽  
Pontus Eriksson ◽  
Jens Klingmann

When low calorific value gases are fired, the performance and stability of gas turbines may deteriorate due to a large amount of inertballast and changes in working fluid properties. Since it is rather rare to have custom-built gas turbines for low lower heating value (LHV) operation, the engine will be forced to operate outside its design envelope. This, in turn, poses limitations to usable fuel choices. Typical restraints are decrease in Wobbe index and surge and flutter margins for turbomachinery. In this study, an advanced performance deck has been used to quantify the impact of firing low-LHV gases in a generic-type recuperated as well as unrecuperated gas turbine. A single-shaft gas turbine characterized by a compressor and an expander map is considered. Emphasis has been put on predicting the off-design behavior. The combustor is discussed and related to previous experiments that include investigation of flammability limits, Wobbe index, flame position, etc. The computations show that at constant turbine inlet temperature, the shaft power and the pressure ratio will increase; however, the surge margin will decrease. Possible design changes in the component level are also discussed. Aerodynamic issues (and necessary modifications) that can pose severe limitations on the gas turbine compressor and turbine sections are discussed. Typical methods for axial turbine capacity adjustment are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document