scholarly journals Implementation of Adaptive Neuro-fuzzy Model to Optimize Operational Process of Multiconfiguration Gas-Turbines

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chao Deng ◽  
Ahmed N. Abdalla ◽  
Thamir K. Ibrahim ◽  
MingXin Jiang ◽  
Ahmed T. Al-Sammarraie ◽  
...  

In this article, the adaptive neuro-fuzzy inference system (ANFIS) and multiconfiguration gas-turbines are used to predict the optimal gas-turbine operating parameters. The principle formulations of gas-turbine configurations with various operating conditions are introduced in detail. The effects of different parameters have been analyzed to select the optimum gas-turbine configuration. The adopted ANFIS model has five inputs, namely, isentropic turbine efficiency (Teff), isentropic compressor efficiency (Ceff), ambient temperature (T1), pressure ratio (rp), and turbine inlet temperature (TIT), as well as three outputs, fuel consumption, power output, and thermal efficiency. Both actual reported information, from Baiji Gas-Turbines of Iraq, and simulated data were utilized with the ANFIS model. The results show that, at an isentropic compressor efficiency of 100% and turbine inlet temperature of 1900 K, the peak thermal efficiency amounts to 63% and 375 MW of power resulted, which was the peak value of the power output. Furthermore, at an isentropic compressor efficiency of 100% and a pressure ratio of 30, a peak specific fuel consumption amount of 0.033 kg/kWh was obtained. The predicted results reveal that the proposed model determines the operating conditions that strongly influence the performance of the gas-turbine. In addition, the predicted results of the simulated regenerative gas-turbine (RGT) and ANFIS model were satisfactory compared to that of the foregoing Baiji Gas-Turbines.

1974 ◽  
Author(s):  
V. V. Uvarov ◽  
V. S. Beknev ◽  
E. A. Manushin

There are two different approaches to develop the gas turbines for power. One can get some megawatts by simple cycle or by more complex cycle units. Both units require very different levels of turbine inlet temperature and pressure ratio for the same unit capacity. Both approaches are discussed. These two approaches lead to different size and efficiencies of gas turbine units for power. Some features of the designing problems of such units are discussed.


Author(s):  
Ching-Jen C. J. Tang

Humidified Gas Turbine (HGT) cycles such as the Evaporative Gas Turbine (EGT) and the Steam-Injected Gas Turbine (STIG) using humid air as the working medium do not require a complete steam turbine bottoming cycle; thus, their initial capital costs are not as high as those for the conventional combined cycles. The performance of a HGT cycle could be comparable to a state-of-the-art combined cycle for small loads. The availability of the steam from a HGT cycle presents opportunities for designing steam-cooled blades. Since the specific heat capacity for steam is higher than that for air, steam could potentially be a better coolant for turbine blades than air, resulting in higher cycle efficiency. In this study, three known HGT cycles are evaluated in terms of their electrical efficiencies and power outputs: the STIG, the Part-flow Evaporative Gas Turbine (PEvGT), and the combined STIG cycles. All the three HGT cycles are analyzed in two cooling options: steam and air coolings. The HGT cycles will be evaluated using consistent thermodynamic properties and assumptions. Like a simple gas turbine cycle, the HGT cycles are based on the well-known Brayton cycle whose performance is dictated by the cycle pressure ratio and turbine inlet temperature. Therefore, the electrical efficiencies and power outputs of the HGT cycles will be calculated as a function of the cycle pressure ratio and turbine inlet temperature. The steam-cooled cycles provide advantages over the air-cooled cycles in the electrical efficiency, power output, and combustion stability. The steam cooling improves the electrical efficiency by approximately 1.4 percentage points for the STIG cycle, by approximately 1.7 percentage points for the PEvGT cycle, and by approximately 1 percentage point for the combined STIG cycle. The maximum electrical efficiency of the steam-cooled PEvGT cycle is 54.6%, only 0.2 percentage points higher than that for the steam-cooled combined STIG cycle. The steam cooling generally results in more power output than the air cooling does for all the HGT cycles at most operating conditions. In addition, the steam cooling reduces the water content of the humid air entering the combustor, leading to significantly improved combustion stability.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


Author(s):  
Vyacheslav V. Romanov ◽  
Sergey N. Movchan ◽  
Vladimir N. Chobenko ◽  
Oleg S. Kucherenko ◽  
Valeriy V. Kuznetsov ◽  
...  

Adding an exhaust gas heat recovery system to a gas turbine (GT) increases its overall power output and efficiency. The introduction of an Air Heat Recovery Turbine Unit (AHRTU) using air as the heat-transfer agent is one of the ways of this increasing. This article presents the results of a GT with AHRTU for a turbine inlet temperature range from 573K to 873K and a compressor pressure ratio from 2.5 to 12. Main component performance of the AHRTU, weight and size are determined and optimized to match gas turbines. The potential for use of GT with AHRTU is specified. Exhaust gas heat recovery using a GT with AHRTU enable 4%–6% increases in efficiency (absolute), and 12%–20% increases in power output of mechanical drive plants.


Author(s):  
Yukiko Agata ◽  
Shinichi Akabayashi ◽  
Shinya Ishikawa ◽  
Yuji Matsumura

Decreases in inlet mass flow due to rises in ambient temperature during the summer lead to a decrease in the power output of gas turbines. In order to recover lost output, this study employed a mist atomization system using efficient spray nozzles, developed mainly as a technology for urban heat-island mitigation, installing the system in an inlet air flow path of a gas turbine at Higashi-Niigata thermal power station No.4 train, a commercial plant. The nozzles can efficiently decrease inlet air temperature of gas turbines because of their minute atomized mist size and highly-efficient evaporation properties. A flow path in the upstream of the inlet filter was used for mist evaporation by the system. This path is unique to the power plant, and is intended to prevent snow particles from direct entry. Model and field tests to confirm safe and effective operation of the system developed were performed in order to address possible concerns associated with the introduction of this system. As a basic consideration, wind tunnel experiments using nozzles were performed. Through the experiments, the most suitable nozzles were chosen, and effectiveness of the mist atomization was evaluated. The basic specifications of the system were determined from the evaluation results. At the same time, flow-field in the inlet air channel of the intended gas turbine was analyzed, and positioning of the atomization devices optimized. The mist atomization system that was developed was installed in a gas turbine at the power plant. To prevent excessive atomization from possibly causing erosion, a target value of 95% humidity at the compressor inlet was set, and a thermo-hygrometer was installed downstream of the inlet silencer to monitor humidity. As a result of the operation, no signs of erosion were detected in a major inspection conducted about one year following the introduction of the system. Another concern had to do with immediate changes in the state of the gas turbine due to mist atomization stoppages. To evaluate effects of the stoppages, field tests in the plant were performed, resulting in no significant changes in turbine inlet temperature and exhaust gas temperature. Combustion pressure oscillations was also not observed. From these results, it has been confirmed that the system can be operated safely. After activating the atomization system, inlet temperature decreased by up to about 7.5 degrees Celsius and power output increased by up to 13 MW in the gas turbine.


Author(s):  
Alessandro Corradetti ◽  
Umberto Desideri ◽  
Ashok D. Rao

Various gas turbine cycles are known where water is introduced as a liquid or as a vapor into the combustor of the gas turbine. Such cycles include the Humid Air Turbine (HAT) cycle, the Steam Injected (STIG) cycle, and the Regenerated Water Injected gas turbine cycle (RWI). The effect of water vapor is the increasing of net power output and the reduction of NOx formation within the combustor. However the net increase in power output is limited in commercial models of gas turbines, because a large addition of water vapor leads to the mismatch between the compressor and the turbine. In this paper a possible method to solve this problem is proposed: it is based on a novel concept for combining refrigeration and power production in humid gas turbine cycles. In the proposed system a fraction of the air at compressor discharge is extracted, cooled to nearly ambient temperature, dried and expanded in a turbine. At turbine outlet the air is at a very low temperature and can be used for providing refrigeration. A thermodynamic analysis has been carried out to investigate the performance of the system in HAT, STIG and RWI cycles for different operating conditions representing the state of art of commercial gas turbines. In particular the pressure ratio and the turbine inlet temperature have been respectively varied in the range 7–45 and 900–1500°C. Sensitivity analyses have been performed to assess how the amounts of extracted air and injected steam affect the net power output, the electrical efficiency and the cooling. The results show that cryogenic temperatures (lower than −100°C) for refrigeration can be achieved in combination with very high electrical efficiency (over 40%, typical of humid gas turbine cycles).


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
K. Sarabchi ◽  
A. Ansari

Cogeneration is a simultaneous production of heat and electricity in a single plant using the same primary energy. Usage of a cogeneration system leads to fuel energy saving as well as air pollution reduction. A gas turbine cogeneration plant (GTCP) has found many applications in industries and institutions. Although fuel cost is usually reduced in a cogeneration system but the selection of a system for a given site optimally involves detailed thermodynamic and economical investigations. In this paper the performance of a GTCP was investigated and an approach was developed to determine the optimum size of the plant to meet the electricity and heat demands of a given site. A computer code, based on this approach, was developed and it can also be used to examine the effect of key parameters like pressure ratio, turbine inlet temperature, utilization period, and fuel cost on the economics of GTCP.


Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


Sign in / Sign up

Export Citation Format

Share Document