Measurement of Vapor Superheat in Post-Critical-Heat-Flux Boiling

1980 ◽  
Vol 102 (3) ◽  
pp. 465-470 ◽  
Author(s):  
S. Nijhawan ◽  
J. C. Chen ◽  
R. K. Sundaram ◽  
E. J. London

A differentially-aspirated superheat probe was developed to measure vapor temperatures in post-critical-heat-flux, dispersed-flow boiling. Measurements obtained for water, at low-to-moderate pressures and mass flow rates in a tube, indicated very significant non-equilibrium, with vapor superheats of several hundred degrees (°C). Predictions of published correlations showed unsatisfactory agreement with the experimental results.

Author(s):  
Ali Kos¸ar

Boiling heat transfer is an important heat removal mechanism for cooling applications in micro scale and finds many applications. Many studies were conducted to shed light on boiling heat transfer in microchannels. They were concentrated on saturation boiling at low mass fluxes (G<1000 kg/m2s). With the enhancement in micro pumping capabilities, flow boiling could be performed at higher mass velocities so that high cooling rates (>1000 W/cm2) could be possibly attained. Due to the increasing trend in critical heat flux and suppression of boiling instabilities with increasing mass velocity flow boiling is becoming more and more attractive at higher mass velocities, where subcooled boiling conditions are expected at high mass velocities. With the shift from low to high flow rates, a transition in both boiling heat transfer (saturated boiling heat transfer to subcooling boiling heat transfer) and critical heat flux (dryout type critical heat flux to departure from nucleate boiling critical heat flux) from one mechanism to another is likely to occur. Few experimental studies are present in the literature related to this subject. In this paper, it is aimed at addressing to the lack of information about boiling heat transfer at high flow rates and presenting experimental data and results related to boiling heat transfer and Critical Heat Flux (CHF) at high flowrates. New emerging technologies resulting in local heating such as nano-scale plasmonic applications and near field radiative energy exchange between objects could greatly benefit from boiling heat transfer at high flow rates in micro scale.


Author(s):  
Sergio Escobar-Vargas ◽  
Jorge E. Gonzalez ◽  
Orlando Ruiz ◽  
Cullen Bash ◽  
Ratnesh Sharma ◽  
...  

The increasing power density on electronic components has resulted in temperature problems related to the generation of hot spots and the need to remove high heat flux in small areas. This work is aimed at the cooling of small surfaces (1 mm × 1.2 mm) by using a monodisperse spray from thermal ink jet (TIJ) atomizers. Heat fluxes near the critical heat flux (CHF) are obtained for different conditions of cooling mass flow rate, droplet deposition, and number of active droplet jets. Experimental results at quasiequilibrium show the heat flux scales to the cooling mass flow rate. It is observed that two simultaneously activated jets result in slightly smaller heat flux compared to a single jet of droplets for the same mass flow rate. Droplet momentum and spreading or splashing, as determined by a combination of Weber number and Reynolds number effect via K = We1/2Re1/4, may impact the efficiency of the delivery of the cooling mass flow. Current experimental results at K = 24.5 and K = 52.2 for the copper surface temperatures ranging 110 – 120 °C indicate there is little influence of the splashing on the heat dissipation. System heat losses are measured experimentally and compared to a numerical and analytical solution to estimate the actual heat dissipated by the droplet change of phase.


Sign in / Sign up

Export Citation Format

Share Document