Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air

1970 ◽  
Vol 92 (1) ◽  
pp. 73-82 ◽  
Author(s):  
D. M. Kercher ◽  
W. Tabakoff

The results of an experimental investigation on the average surface heat transfer co-efficients under a perforated plate of multiple, square array, round impinging air jets are presented. Correlation of the heat transfer performance in a semi-enclosed environment is presented. The correlation includes the effects of the jet “spent air” flowing perpendicular to the jets; the effects of the jet diameter, jet spacing, and jet-to-surface distance. The data cover a range of jet diameter Reynolds number from 3 × 102 to 3 × 104, jet spacing from 3.1 to 12.5 dia, and plate-to-surface distance of 1.0 to 4.8 dia. The results are compared with previously reported investigations with reasonable agreement. Correlation is in the form NuD,x = φ1φ2ReDm(Zn/D)0.091Pr1/3 where φ1 and m are functions of the jet spacing parameter, Xn/D, and Reynolds number, and φ2 is the heat transfer coefficient degradation factor due to “spent air”. φ1, φ2 and m are presented in graphical form as a function of important dimensionless parameters.

2014 ◽  
Vol 18 (3) ◽  
pp. 949-956 ◽  
Author(s):  
Mladen Tomic ◽  
Predrag Zivkovic ◽  
Mica Vukic ◽  
Gradimir Ilic ◽  
Mladen Stojiljkovic

Numerical simulations were performed to determine the heat transfer coefficient of a perforated plate with square arranged cylindrical perforations. Three parameters were varied in the study: plate porosity, pitch Reynolds number and working fluid, while perforation diameter and plate thickness were constant. The Reynolds number was varied in the range from 50 to 7000, and porosity in the range from 0.1 to 0.3. As working fluids, helium, air or carbon-dioxide were set, respectively. The Nusselt number was correlated in the function of the Reynolds number, the Prandtl number, and the pitch-to-diameter ratio. The comparison with other correlations is given at the end of the paper. The difference was found to be acceptable.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ing Jiat Kendrick Wong ◽  
Ngieng Tze Angnes Tiong

AbstractThis paper presents the numerical study of thermal performance factor of Al2O3-Cu/water hybrid nanofluid in circular and non-circular ducts (square and rectangular). Turbulent regime is studied with the Reynolds number ranges from 10000 to 100000. The heat transfer performance and flow behaviour of hybrid nanofluid are investigated, considering the nanofluid volume concentration between 0.1 and 2%. The thermal performance factor of hybrid nanofluid is evaluated in terms of performance evaluation criteria (PEC). This present numerical results are successfully validated with the data from the literature. The results indicate that the heat transfer coefficient and Nusselt number of Al2O3-Cu/water hybrid nanofluid are higher than those of Al2O3/water nanofluid and pure water. However, this heat transfer enhancement is achieved at the expense of an increased pressure drop. The heat transfer coefficient of 2% hybrid nanofluid is approximately 58.6% larger than the value of pure water at the Reynolds number of 10000. For the same concentration and Reynolds number, the pressure drop of hybrid nanofluid is 4.79 times higher than the pressure drop of water. The heat transfer performance is the best in the circular pipe compared to the non-circular ducts, but its pressure drop increment is also the largest. The hybrid nanofluid helps to improve the problem of low heat transfer characteristic in the non-circular ducts. In overall, the hybrid nanofluid flow in circular and non-circular ducts are reported to possess better thermal performance factor than that of water. The maximum attainable PEC is obtained by 2% hybrid nanofluid in the square duct at the Reynolds Number of 60000. This study can help to determine which geometry is efficient for the heat transfer application of hybrid nanofluid.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongfei Tang ◽  
Hongyan Huang ◽  
Wanjin Han

The different turbulence models are adopted to simulate NASA-MarkII high pressure air-cooled gas turbine. The experimental work condition is Run 5411. The paper researches that the effect of different turbulence models for the flow and heat transfer characteristics of turbine. The turbulence models include: the laminar turbulence model, high Reynolds number k-ε turbulence model, low Reynolds number turbulence model (k-ω standard format, k-ω-SST and k-ω-SST-γ-θ) and B-L algebra turbulence model which is adopted by the compiled code. The results show that the different turbulence models can give good flow characteristics results of turbine, but the heat transfer characteristics results are different. Comparing to the experimental results, k-ω-SST-θ-γ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature is higher. The results of B-L algebra turbulence model show that the results of B-L model are accurate besides it has 4% temperature error in the transition region. As to the other turbulence models, the results show that all turbulence models can simulate the temperature distribution on the blade pressure surface except the laminar turbulence model underestimates the heat transfer coefficient of turbulence flow region. On the blade suction surface with transition flow characteristics, high Reynolds number k-ε turbulence model overestimates the heat transfer coefficient and causes the blade surface temperature is high about 90K than the experimental result. Low Reynolds number k-ω standard format and k-ω-SST turbulence models also overestimate the blade surface temperature value. So it can draw a conclusion that the unreasonable choice of turbulence models can cause biggish errors for conjugate heat transfer problem of turbine. The combination of k-ω-SST-γ-θ model and B-L algebra model can get more accurate turbine thermal environment results. In addition, in order to obtain the affect of different turbulence models for gas turbine conjugate heat transfer problem. The different turbulence models are adopted to simulate the different computation mesh domains (First case and Second case). As to each cooling passages, the first case gives the wall heat transfer coefficient of each cooling passages and the second case considers the conjugate heat transfer course between the cooling passages and blade. It can draw a conclusion that the application of heat transfer coefficient on the wall of each cooling passages avoids the accumulative error. So, for the turbine vane geometry models with complex cooling passages or holes, the choice of turbulence models and the analysis of different mesh domains are important. At last, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Chunkyraj Khangembam ◽  
Dushyant Singh

Experimental investigation on heat transfer mechanism of air–water mist jet impingement cooling on a heated cylinder is presented. The target cylinder was electrically heated and was maintained under the boiling temperature of water. Parametric studies were carried out for four different values of mist loading fractions, Reynolds numbers, and nozzle-to-surface spacings. Reynolds number, Rehyd, defined based on the hydraulic diameter, was varied from 8820 to 17,106; mist loading fraction, f ranges from 0.25% to 1.0%; and nozzle-to-surface spacing, H/d was varied from 30 to 60. The increment in the heat transfer coefficient with respect to air-jet impingement is presented along with variation in the heat transfer coefficient along the axial and circumferential direction. It is observed that the increase in mist loading greatly increases the heat transfer rate. Increment in the heat transfer coefficient at the stagnation point is found to be 185%, 234%, 272%, and 312% for mist loading fraction 0.25%, 0.50%, 0.75%, and 1.0%, respectively. Experimental study shows identical increment in stagnation point heat transfer coefficient with increasing Reynolds number, with lowest Reynolds number yielding highest increment. Stagnation point heat transfer coefficient increased 263%, 259%, 241%, and 241% as compared to air-jet impingement for Reynolds number 8820, 11,493, 14,166, and 17,106, respectively. The increment in the heat transfer coefficient is observed with a decrease in nozzle-to-surface spacing. Stagnation point heat transfer coefficient increased 282%, 248%, 239%, and 232% as compared to air-jet impingement for nozzle-to-surface spacing of 30, 40, 50, and 60, respectively, is obtained from the experimental analysis. Based on the experimental results, a correlation for stagnation point heat transfer coefficient increment is also proposed.


1980 ◽  
Vol 102 (3) ◽  
pp. 508-512 ◽  
Author(s):  
S. Wong ◽  
L. E. Hochreiter

Analysis is carried out for dispersed flow heat transfer under reactor emergency cooling conditions. The present formulation explicitly reveals an extra dependence of the heat transfer coefficient and Nusselt number on the mean vapor temperature for droplet dispersed flow which is not found in single phase flow heat transfer. The heat transfer results obtained from three different geometries—an infinite square array of cylindrical rods, an annulus and a circular pipe—are compared; all have the same hydraulic diameter. It is found that, within the framework of the present analysis, results for the annulus and the rod bundles agree well when the pitch-to-diameter ratio is 1.5 or greater. The circular pipe is in general a poor approximation for rod bundle geometries except at a pitch-to-diameter ratio of about 1.3 which is typical of present day light water reactor fuel assemblies.


1977 ◽  
Vol 99 (3) ◽  
pp. 411-418 ◽  
Author(s):  
V. K. Dhir ◽  
J. N. Castle ◽  
Ivan Catton

Sublimation of a horizontal slab of dry ice (≃ 190 K) placed beneath a pool of warm water or benzene (278–340 K) has been observed experimentally. Data for the heat transfer coefficient have been obtained in both steady and quasi-static states. The heat transfer coefficient for this pseudo film boiling process is found to be strongly dependent on the pool temperature. In the temperature range of stable film boiling, the heat transfer coefficient depends on the laminar or turbulent nature of the gas film. However, when the pool temperatures are such that a stable film can no longer be maintained, and the overlying liquid starts to freeze at the interface, the heat transfer coefficient data are correlated with the parameter cpΔTf/hsf for the liquid. Post-experiment visual observations of the dry ice surface show the presence of valleys and ridges arranged in a nearly square array spaced about one Taylor wavelength apart. An application of the present study to the fast reactor hypothetical accident situations in which a pool of molten fuel may be formed on horizontal steel surfaces is discussed.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Mandana S. Saravani ◽  
Nicholas J. DiPasquale ◽  
Ahmad I. Abbas ◽  
Ryoichi S. Amano

Abstract This study presents findings on combined effects of Reynolds number and rotational effect for a two-pass channel with a 180-deg turn, numerically and experimentally. To have a better understanding of the flow behavior and to create a baseline for future studies, a smooth wall channel with the square cross section is used in this study. The Reynolds number varies between 6000 and 35,000. Furthermore, by changing the rotational speed, the maximum rotation number of 1.5 is achieved. For the numerical investigation, large eddy simulation (LES) is utilized. Results from the numerical study show a good agreement with the experimental data. From the results, it can be concluded that increasing both Reynolds number and rotational speed is in favor of the heat transfer coefficient enhancement, especially in the turn region.


2020 ◽  
Vol 307 ◽  
pp. 01038
Author(s):  
Mohammed Zohud ◽  
Ahmed Ouadha ◽  
Redouane Benzeguir

The present paper aims to numerically investigate the flow, heat transfer and entropy generation of some hydrocarbon based nanorefrigerants flowing in a circular tube subject to constant heat flux boundary condition. Numerical tests have been performed for 4 types of nanoparticles, namely Al2O3, CuO, SiO2, and ZnO with a diameter equal to 30 nm and a volume concentration of φ = 5%. These nanoparticles are dispersed in some hydrocarbon-based refrigerants, namely tetrafluoroethane (R134a), propane (R290), butane (R600), isobutane (R600a) and propylene (R1270). Computations have been performed for Reynolds number ranging from 600 to 2200. The numerical results in terms of the average heat transfer coefficient of pure refrigerants have been compared to values obtained using correlations from the literature. The results show that the increase of the Reynolds number increases the heat transfer coefficient and decreases the total entropy generation.


Author(s):  
Y. Koizumi ◽  
T. Okuyama ◽  
H. Ohtake

Heat transfer and flow behavior in the mini tube bank were examined. The tube bank was composed of 1 mm diameter nickel wires and a 30 mm wide × 15 mm high flow channel. Experiments were performed in the range of the rod Re = 5 ~ 430 by using water. Numerical analyses were also conducted with the commercial CFD code STAR-CD. The heat transfer coefficient after the second row was lower than first row's one. The flow visualization results indicated that the wake region was stagnant when the Reynolds number was low. This flow stagnation seemed to cause the heat transfer coefficient deterioration in the tube bank. As the Reynolds number was increased, the flow state in the wake region gradually changed from the stagnant condition to the more disturbed condition. The deeper the row was, the more disturbed the wake was. The heat transfer coefficient began to recover to the first row value at certain Reynolds number. The recovery started from the most downstream row; fifth row in the present experiments and was propagated to the upstream row. The Reynolds number when the recovery was initiated decreased as the spacing between rods was increased. The analytical results of the STAR-CD code supported the experimental results. When the wake was stagnant, the heat transfer coefficient distribution around the rear rod, i.e. the rod in the wake, showed a large dip in the front region of the rod. It was considered that this dip caused the heat transfer coefficient decrease after the second row observed in the experiments.


Sign in / Sign up

Export Citation Format

Share Document