A Generalization of the System Mean Void Fraction Model for Transient Two-Phase Evaporating Flows

1981 ◽  
Vol 103 (1) ◽  
pp. 81-85 ◽  
Author(s):  
B. T. Beck ◽  
G. L. Wedekind

The system mean void fraction model has been successful in the prediction of a variety of transient evaporating and condensing flow phenomena; however, applications of the model have been restricted to physical situations involving complete vaporization or condensation. The major contribution of this paper is the development of a generalization of the existing system mean void fraction model, applicable to the broader class of transient two-phase flow problems involving incomplete vaporization. Present applications of the generalized system mean void fraction model to transient evaporating flows indicate good agreement with experimental void fraction and mass flux response data available in the literature. These data represent a variety of different flow geometries, types of fluids, and a wide range of operating conditions.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
W. G. Sim ◽  
Njuki W. Mureithi

An approximate analytical model, to predict the drag coefficient on a cylinder and the two-phase Euler number for upward two-phase cross-flow through horizontal bundles, has been developed. To verify the model, two sets of experiments were performed with an air–water mixture for a range of pitch mass fluxes and void fractions. The experiments were undertaken using a rotated triangular (RT) array of cylinders having a pitch-to-diameter ratio of 1.5 and cylinder diameter 38 mm. The void fraction model proposed by Feenstra et al. was used to estimate the void fraction of the flow within the tube bundle. An important variable for drag coefficient estimation is the two-phase friction multiplier. A new drag coefficient model has been developed, based on the single-phase flow Euler number formulation proposed by Zukauskas et al. and the two-phase friction multiplier in duct flow formulated by various researchers. The present model is developed considering the Euler number formulation by Zukauskas et al. as well as existing two-phase friction multiplier models. It is found that Marchaterre's model for two-phase friction multiplier is applicable to air–water mixtures. The analytical results agree reasonably well with experimental drag coefficients and Euler numbers in air–water mixtures for a sufficiently wide range of pitch mass fluxes and qualities. This model will allow researchers to provide analytical estimates of the drag coefficient, which is related to two-phase damping.


1964 ◽  
Vol 86 (2) ◽  
pp. 257-261 ◽  
Author(s):  
E. P. Mikol ◽  
J. C. Dudley

Data and observations obtained during the study of two-phase flow phenomena for refrigerants flowing in small bore copper and glass tubes have been examined for their significance to the cavitation. Visual and photographic observations have been made of the inception of vaporization and of the movement of the point of inception as operating conditions are varied. Liquid tension has been deduced as occurring in these tests. Liquid tension and cavitation index data are presented. The experimental method is recommended as a means for studying many aspects of the phenomenon of cavitation.


Author(s):  
Shao-Wen Chen ◽  
Caleb S. Brooks ◽  
Chris Macke ◽  
Takashi Hibiki ◽  
Mamoru Ishii ◽  
...  

In order to investigate the possible effect of seismic vibration on two-phase flow dynamics and thermal-hydraulics of a nuclear reactor, experimental tests of adiabatic air-water two-phase flow under low-frequency vibration were carried out in this study. An eccentric cam vibration module operated at low motor speed (up to 390rpm) was attached to an annulus test section which was scaled down from a prototypic BWR fuel assembly sub-channel. The inner and outer diameters of the annulus are 19.1mm and 38.1mm, respectively. The two-phase flow operating conditions cover the ranges of 0.03≤<jg> ≤1.46m/s and 0.25≤<jf>≤1.00m/s and the vibration displacement ranges from ±0.8mm to ±22.2mm. Steady-state area-averaged instantaneous and time-averaged void fraction was recorded and analyzed in stationary and vibration experiments. A neural network flow regime identification technique and fast Fourier transformation (FFT) analysis were introduced to analyze the flow regimes and void signals under stationary and vibration conditions. Experimental results reveal possible changes in flow regimes under specific flow and vibration conditions. In addition, the instantaneous void fraction signals were affected and shown by FFT analysis. Possible reasons for the changes include the applied high acceleration and/or induced resonance at certain ports under the specific flow and vibration conditions.


Author(s):  
Jackson B. Marcinichen ◽  
John R. Thome ◽  
Raffaele L. Amalfi ◽  
Filippo Cataldo

Abstract Thermosyphon cooling systems represent the future of datacenter cooling, and electronics cooling in general, as they provide high thermal performance, reliability and energy efficiency, as well as capture the heat at high temperatures suitable for many heat reuse applications. On the other hand, the design of passive two-phase thermosyphons is extremely challenging because of the complex physics involved in the boiling and condensation processes; in particular, the most important challenge is to accurately predict the flow rate in the thermosyphon and thus the thermal performance. This paper presents an experimental validation to assess the predictive capabilities of JJ Cooling Innovation’s thermosyphon simulator against one independent data set that includes a wide range of operating conditions and system sizes, i.e. thermosyphon data for server-level cooling gathered at Nokia Bell Labs. Comparison between test data and simulated results show good agreement, confirming that the simulator accurately predicts heat transfer performance and pressure drops in each individual component of a thermosyphon cooling system (cold plate, riser, evaporator, downcomer (with no fitting parameters), and eventually a liquid accumulator) coupled with operational characteristics and flow regimes. In addition, the simulator is able to design a single loop thermosyphon (e.g. for cooling a single server’s processor), as shown in this study, but also able to model more complex cooling architectures, where many thermosyphons at server-level and rack-level have to operate in parallel (e.g. for cooling an entire server rack). This task will be performed as future work.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 16 ◽  
Author(s):  
Zine Aidoun ◽  
Khaled Ameur ◽  
Mehdi Falsafioon ◽  
Messaoud Badache

Two-phase ejectors play a major role as refrigerant expansion devices in vapor compression systems and can find potential applications in many other industrial processes. As a result, they have become a focus of attention for the last few decades from the scientific community, not only for the expansion work recovery in a wide range of refrigeration and heat pump cycles but also in industrial processes as entrainment and mixing enhancement agents. This review provides relevant findings and trends, characterizing the design, operation and performance of the two-phase ejector as a component. Effects of geometry, operating conditions and the main developments in terms of theoretical and experimental approaches, rating methods and applications are discussed in detail. Ejector expansion refrigeration cycles (EERC) as well as the related theoretical and experimental research are reported. New and other relevant cycle combinations proposed in the recent literature are organized under theoretical and experimental headings by refrigerant types and/or by chronology whenever appropriate and systematically commented. This review brings out the fact that theoretical ejector and cycle studies outnumber experimental investigations and data generation. More emerging numerical studies of two-phase ejectors are a positive step, which has to be further supported by more validation work.


Author(s):  
W. G. Sim

An approximate analytical model, to predict the two-phase damping for upward cross-flow through horizontal bundles, has been developed. This model will allow researches to provide analytical estimates of the damping ratios. The existing semiempirical approach by Pettigrew and Taylor (2003) was approximated by taking the lower envelope of the damping data. To estimate the void fraction for the cross-flow, the void fraction model proposed by Feenstra etc (2000) is utilized. The development of the present damping model stemmed from the two-phase multiplier of pressure loss and the momentum flux of the two-phase flow. The important variables on the damping are identified. The results of the present model agree well with experimental damping ratios in air-mixtures for a sufficiently wide range of pitch mass ratio, quality and p/d ratios. It has also shown predictive capability for steam-water mixtures and Freon 11.


Author(s):  
Wang-Kee In ◽  
Chang-Hwan Shin ◽  
Tae-Hyun Chun

A CFD study was performed to simulate the steady-state void distribution benchmark based on the NUPEC PWR Subchannel and Bundle Tests (PSBT). The void distribution benchmark provides measured void fraction data over a wide range of geometrical and operating conditions in a single subchannel and fuel bundle. This CFD study simulated the boiling flow in a single subchannel. A CFD code was used to predict the void distribution inside the single subchannel. The multiphase flow model used in this CFD analysis was a two-fluid model in which liquid (water) and vapor (steam) were considered as continuous and dispersed fluids, respectively. A wall boiling model was also employed to simulate bubble generation on a heated wall surface. The CFD prediction with a small diameter of vapor bubble shows a higher void fraction near the heated wall and a migration of void in the subchannel gap region. A measured CT image of void distribution indicated a locally higher void fraction near the heated wall for the test conditions of a subchannel averaged void fraction of less than about 20%. The CFD simulation predicted a subchannel averaged void fraction and fluid density which agree well with the measured ones for a low void condition.


Author(s):  
Rodward L. Hewlin ◽  
John P. Kizito

The aim of this paper was to develop a capacitance based sensor capable of measuring void fraction in a continuous two-phase flow field. The design methodology and operation of the capacitance based void fraction sensor is discussed. Two designs of capacitance void fraction sensors were developed and tested. Some of the problems associated with the first were identified and a new sensor electrode configuration was developed which presented a more sensitive and repeatable response. Data was collected covering a wide range of void fraction measurements ranging from 0 to 1 for water as the working fluid. Calibration of the sensor required that the air gap or void capacitance (dry signal) be measured followed by an increase in liquid levels (wet signal) to obtain a range of void fraction measurements for static calibration. The static calibration data obtained was nonlinear for the full range of void fraction measurements for water. This paper covers the design requirements, calibration procedure and static calibration data obtained for the developed sensor, and dynamic void fraction data measurements. The sensor was tested in both a horizontal and vertical orientation and proved to be orientation insensitive. The experimental results are promising for water and verify successful operation for measuring void fraction in continuous two-phase flows.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
M. Giraudeau ◽  
N. W. Mureithi ◽  
M. J. Pettigrew

Momentum variation in two-phase flow generates significant low frequency forces, capable of producing unwanted and destructive vibrations in nuclear or petroleum industries. Two-phase flow-induced forces in piping were previously studied over a range of diameters from 6 mm to 70 mm in different piping element geometries, such as elbows, U-bends, and tees. Dimensionless models were then developed to estimate the rms forces and generate vibration excitation force spectra. It was found that slug flow generates the largest forces due to the large momentum variation between Taylor bubbles and slugs. The present study was conducted with a 52 mm diameter U-bend tube carrying a vertical upward flow. Two-phase flow-induced forces were measured. In addition, two-phase flow parameters, such as the local void fraction, bubble size and velocity, and slug frequency were studied to understand the relationship between the force spectra and the two-phase flow patterns. A new two-phase flow pattern map, based on existing transition models and validated using our own local void fraction measurements and force spectra, is proposed. This paper also presents a comparison of the present dimensionless forces with those of previous studies, thus covers a wide range of geometries and Weber numbers. Finally, a dimensionless spectrum is proposed to correlate forces with large momentum variations observed for certain flow patterns.


Sign in / Sign up

Export Citation Format

Share Document