Momentum and Heat Transfer on a Continuous Moving Surface

1986 ◽  
Vol 108 (3) ◽  
pp. 532-539 ◽  
Author(s):  
D. R. Jeng ◽  
T. C. A. Chang ◽  
K. J. De Witt

An analysis has been carried out to determine the momentum and heat transfer occurring in the laminar boundary layer on a continuous moving surface which has an arbitrary surface velocity and nonuniform surface temperature. Merk series types of solutions are obtained for the momentum and heat transfer for an isothermal surface. The results are expressed in terms of universal functions. For a nonisothermal surface, the procedure begins with a consideration of the solution of the energy equation for a step discontinuity in the surface temperature by the introduction of appropriate transformation variables. Equations for the temperature profile and for the local heat flux are expressed explicitly in terms of the Prandtl number and the surface velocity parameter. Numerical examples for a power law surface velocity and a linearly stretching surface velocity with nonzero slot velocity are given for the isothermal surface. The accuracy of the present solutions is also discussed.

2002 ◽  
Vol 124 (6) ◽  
pp. 1049-1055 ◽  
Author(s):  
Himadri Chattopadhyay ◽  
Sujoy K. Saha

Laminar flow and heat transfer on a moving surface due to a bank of impinging slot jets have been numerically investigated. Two types of jet, namely axial and knife-jet with an exit angle of 60 deg were considered. The surface velocity up to two times the jet velocity at the nozzle exit was imposed on the impinging surface. It has been observed that while with increasing velocity of the impinging surface, the total heat transfer reduces; the distribution pattern becomes more uniform. For the same amount of mass and momentum flux at the nozzle exit, heat transfer from the axial jet is considerably higher than that from the vectored jets at all surface velocities considered. It was found that the local heat transfer over the surface for the case of the axial jet and the knife-jet scales with Re0.5 and Re0.55, respectively.


Author(s):  
Tom I-Ping Shih ◽  
Srisudarshan Krishna Sathyanarayanan

Convective heat transfer over surfaces is generally presented in the form of the heat-transfer coefficient (h) or its nondimensional form, the Nusselt number (Nu). Both require the specification of the free-stream temperature (Too) or the bulk (Tb) temperature, which are clearly defined only for simple configurations. For complicated configurations with flow separation and multiple temperature streams, the physical significance of Too and Tb becomes unclear. In addition, their use could cause the local h to approach positive or negative infinity if Too or Tb is nearly the same as the local wall temperature (Twall). In this paper, a new Nusselt number, referred to as the SCS number, is proposed, that provides information on the local heat flux but does not use h and hence by-passes the need to define Too or Tb. CFD analysis based on steady RANS with the shear-stress transport model is used to compare and contrast the SCS number with Nu for two test problems: (1) compressible flow and heat transfer in a straight duct with a circular cross section and (2) compressible flow and heat transfer in a high-aspect ratio rectangular duct with a staggered array of pin fins. Parameters examined include: Reynolds number at the duct inlet (3,000 to 15,000 for the circular duct and 15,000 and 150,000 for the rectangular duct), wall temperature (Twall = 373 K to 1473 K for the circular duct and 313 K and 1,173 K for the rectangular duct), and distance from of the inlet of the duct (up to 100D for the circular duct and up to 156D for the rectangular duct). For the circular duct, Nu was found to decrease rapidly from the duct inlet until reaching a minimum and then to rise until reaching a nearly constant value in the “fully” developed region if the wall is heating the gas. If the wall is cooling the gas, then Nu has a constant positive slope in the “fully” developed region. The location of the minimum in Nu and where Nu becomes nearly constant in value or in slope are strong functions of Twall. For the SCS number, the decrease from the duct inlet is monotonic with a negative slope, whether the wall is heating or cooling the gas. Also, different SCS curves for different Twall approach each other as the distance from the inlet increases. For the rectangular duct, Nu tends to oscillate about a constant value in the pin-fin region, whereas SCS tends to oscillate about a line with a negative slope. For both test problems, the variation of SCS is not more complicated than Nu, but SCS yields the local heat flux without need for Tb, a parameter that is hard to define and measure for complicated problems.


Author(s):  
Jungho Lee ◽  
Cheong-Hwan Yu ◽  
Sang-Jin Park

Water spray cooling is an important technology which has been used in a variety of engineering applications for cooling of materials from high-temperature nominally up to 900°C, especially in steelmaking processes and heat treatment in hot metals. The effects of cooling water temperature on spray cooling are significant for hot steel plate cooling applications. The local heat flux measurements are introduced by a novel experimental technique in which test block assemblies with cartridge heaters and thermocouples are used to measure the heat flux distribution on the surface of hot steel plate as a function of heat flux gauge. The spray is produced from a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-to-target spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to 45°C. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.


1993 ◽  
Vol 115 (2) ◽  
pp. 319-324 ◽  
Author(s):  
J. von Wolfersdorf ◽  
R. Hoecker ◽  
T. Sattelmayer

A transient heat transfer technique using a heating foil and liquid crystals is described. The basic idea is a step-heating technique, eliminating the local heat flux and the surface temperature during the data reduction. Nonuniformities in the heating pattern are allowed and calibration of the liquid crystals is no longer necessary. They are used as an indicator of an isotherm only. The heat transfer coefficient is deduced from two time measurements. The laminar and turbulent boundary layer flows over a flat plate were tested to verify the applicability and accuracy of the method.


2009 ◽  
Vol 15 ◽  
pp. 3-8
Author(s):  
Stasys Sinkunas ◽  
Jonas Gylys ◽  
Algimantas Kiela

The purpose of the present study is to obtain a comprehension for the momentum and heat transfer developments in gravitational liquid film flow. Analytical study of stabilized heat transfer for turbulent film was performed. A calculation method of the local heat transfer coefficient for a turbulent film falling down a vertical convex surface was proposed. The dependence of heat flux variation upon the distance from the wetted surface has been established analytically. Experimental study of velocity profiles for turbulent liquid film flow in the entrance region is performed as well. Analysis of profiles allowed estimating the length of stabilization for turbulent film flow under different initial velocities.


2011 ◽  
Vol 201-203 ◽  
pp. 171-175
Author(s):  
Wei Zheng Zhang ◽  
Xiao Liu ◽  
Chang Hu Xiang

The turbulent flow in the near-wall region affects the wall heat transfer dominantly. The farther it is from the wall, the less effect it has. So a two-step mechanism of the turbulent wall heat transfer is released: first, the energy is transferred to the outside of the viscous sub-layer by the rolling of the micro-eddy; secondly, the energy gets to the wall by conduction. Then, a theoretical model of wall heat transfer is developed with this concept. The constant in the model is confirmed by experiment and simulation of the transient turbulent heat transfer in pipe flow. Finally, the model is used to predict the local heat flux under different conditions, and the results agree well with the experimental results as well as the simulation results.


Sign in / Sign up

Export Citation Format

Share Document