Thermal Convection in a Rectangular Cavity Filled With a Heat-Generating, Darcy Porous Medium

1987 ◽  
Vol 109 (3) ◽  
pp. 697-703 ◽  
Author(s):  
V. Prasad

Two-dimensional, steady natural convection in a rectangular cavity filled with a heat-generating, saturated porous medium has been studied numerically for the case when the vertical walls of the cavity are isothermal and the horizontal walls are either adiabatic or cold. Results are presented in terms of the streamlines and isotherms, the maximum temperature in the cavity, and the local and overall Nusselt numbers. The buoyant flow together with the uniform heat generation produces a highly stratified medium at high Rayleigh numbers. Although the maximum temperature in the cavity θmax invariably increases with the Rayleigh number Ra and aspect ratio A, the rate of increase diminishes with this enhancement in Ra and A. However, the change in the horizontal wall boundary condition from adiabatic to cold reduces θmax. The local heat flux on the bounding walls is a strong function of the Rayleigh number, the aspect ratio, and the wall boundary conditions. The variation in overall Nusselt number is qualitatively similar to that observed in the case of a differentially heated cavity, and the present heat transfer rates are close to that for the cavity heated by applying a uniform heat flux. Several correlations are presented for maximum temperature and overall Nusselt number.

2004 ◽  
Vol 3 (2) ◽  
pp. 100
Author(s):  
T. Dias Jr. ◽  
L. F. Milanez

In this work, the laminar natural convection in high aspect ratio three-dimensional enclosures has been numerically studied. The enclosures studied here were heated with uniform heat flux on a vertical wall and cooled at constant temperature on the opposite wall. The remaining walls were considered adiabatic. Fluid properties were assumed constant except for the density change with temperature on the buoyancy term. The governing equations were solved using the finite volumes method and the dimensionless form of these equations has the Prandtl number and the modified Rayleigh number as parameters. The influences of the Rayleigh number and of the cavity aspect ratio on the Nusselt number, for a Prandtl number of 0.7, were analyzed. Results were obtained for values of the modified Rayleigh number up to 106 and for aspect ratios ranging from 1 to 20. The results were compared with two-dimensional results available in the literature and the variation of the average Nusselt number with the parameters studied were discussed.


2004 ◽  
Vol 3 (2) ◽  
Author(s):  
T. Dias Jr. ◽  
L. F. Milanez

In this work, the laminar natural convection in high aspect ratio three-dimensional enclosures has been numerically studied. The enclosures studied here were heated with uniform heat flux on a vertical wall and cooled at constant temperature on the opposite wall. The remaining walls were considered adiabatic. Fluid properties were assumed constant except for the density change with temperature on the buoyancy term. The governing equations were solved using the finite volumes method and the dimensionless form of these equations has the Prandtl number and the modified Rayleigh number as parameters. The influences of the Rayleigh number and of the cavity aspect ratio on the Nusselt number, for a Prandtl number of 0.7, were analyzed. Results were obtained for values of the modified Rayleigh number up to 106 and for aspect ratios ranging from 1 to 20. The results were compared with two-dimensional results available in the literature and the variation of the average Nusselt number with the parameters studied were discussed.


1989 ◽  
Vol 111 (4) ◽  
pp. 916-925 ◽  
Author(s):  
V. Prasad ◽  
A. Chui

A numerical study is performed on natural convection inside a cylindrical enclosure filled with a volumetrically heated, saturated porous medium for the case when the vertical wall is isothermal and the horizontal walls are either adiabatic or isothermally cooled. When the horizontal walls are insulated, the flow in the cavity is unicellular and the temperature field in upper layers is highly stratified. However, if the top wall is cooled, there may exist a multicellular flow and an unstable thermal stratification in the upper region of the cylinder. Under the influence of weak convection, the maximum temperature in the cavity can be considerably higher than that predicted for pure conduction. The local heat flux on the bounding walls is generally a strong function of the Rayleigh number, the aspect ratio, and the wall boundary conditions. The heat removal on the cold upper surface decreases with the aspect ratio, thereby increasing the Nusselt number on the vertical wall. The effect of Rayleigh number is, however, not straightforward. Several correlations are presented for the maximum cavity temperature and the overall Nusselt number.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Hayder I. Mohammed ◽  
Donald Giddings

Abstract Heat and mass transfer are investigated numerically with steady-state laminar natural convection through a vertical cylindrical enclosure filled with a liquid-saturated porous medium. The vertical wall is under a constant magnetic field and various durations of periodic heating boundary condition; the top and bottom surfaces are kept at a constant cold temperature. Continuity, momentum, and energy equations are transformed to dimensionless equations. The finite difference approach with the line successive over-relaxation (LSOR) method is used to obtain the computational results. This study covers the heat transfer, the temperature distribution, and the velocity field in the domain under the variation of different parameters. The code used is validated by modifying it to analyze the Nusselt number in the existing experimental literature of Izadpanah et al. (1998, “Experimental and Theoretical Studies of Convective Heat Transfer in a Cylindrical Porous Medium,” Int. J. Heat Fluid Flow, 19(6), pp. 629–635). This work shows that Nusselt number decreases (with varying gradient) as the aspect ratio increases, and that it increases as the Rayleigh number increases. The centerline temperature has a proportional relationship with the heating amplitude and the heating period (as the system receives more heat) and is inversely proportional with Rayleigh number. Increasing the Rayleigh number causes increased convective velocity, which affects the position of the hot region, and causes a decrease in the temperature field. Increasing the aspect ratio results in a warm stream at the center of the cylinder, and when the time period of the heating increases, the circulation becomes faster and the intensity of the temperature contour layers decreases. In this work, a correlation for Nu as a function of the mentioned parameters is developed.


1994 ◽  
Vol 17 (3) ◽  
pp. 515-536 ◽  
Author(s):  
D. H. Riahi

Nonlinear convection in a porous medium and rotating about vertical axis is studied in this paper. An upper bound to the heat flux is calculated by the method initiated first by Howard [6] for the case of infinite Prandtl number.ForTa≪0(1), the rotational effect is not significant. For0(1)≪Ta≪0(RlogR), the Nusselt number decreases with increasingTafor a given Rayleigh numberR. The flow has always a finite number of modes, but with increasingTain this region, the number of modes decreases. The functional dependence of the Nusselt number onRandTais found to have discontinuities as the number of modesN*reduces toN*−1. For0(RlogR)≪Ta≪0(R), the Nusselt number is proportional toRTa(logRTa). The stabilizing effect of rotation is so strong that the optimal solution has left with only one horizontal mode. ForTa=0(R), the Nusselt number becomes0(1)and the convection is inhibited entirely by rotation forTa>1π2R.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


2011 ◽  
Vol 71-78 ◽  
pp. 1187-1190
Author(s):  
Yan Lai Zhang ◽  
Zhong Hao Rao ◽  
Shuang Feng Wang ◽  
Hong Zhang ◽  
Li Jun Li ◽  
...  

This experiment is performed to investigate heat transfer characteristics with the PCM microcapsule slurry in a solid phase state at a horizontal rectangular enclosure heating from below and cooling from top. Some important parameters are taken into account such as the mass concentration of the PCM, the temperature difference between heating plate and cooling plate, Nusselt number Nu, Rayleigh number Ra and the aspect ratio (width/height) of the horizontal rectangular enclosure. Experiment is done under the thermal steady condition in the PCM microcapsule slurry. Heat transfer coefficient is measured under various temperature differences in PCM mass concentrations of 10% and 20%. And relationship with Nusselt number Nu and Rayleigh number Ra is summarized to various heights H or the aspect ratio (width/height) Ar of enclosure.


1991 ◽  
Vol 113 (1) ◽  
pp. 97-107 ◽  
Author(s):  
S. Ramanathan ◽  
R. Kumar

This paper presents the numerical results of natural convective flows between two vertical, parallel plates within a large enclosure. A parametric study has been conducted for various Prandtl numbers and channel aspect ratios. The results are in good agreement with the reported results in the literature for air for large aspect ratios. However, for small aspect ratios, the present numerical results do not agree with the correlations given in the literature. The discrepancy is due to the fact that the published results were obtained for channels where the diffusion of thermal energy in the vertical direction is negligible. The results obtained in this paper indicate that vertical conduction should be considered for channel aspect ratios less than 10 for Pr = 0.7. Correlations are presented to predict the maximum temperature and the average Nusselt number on the plate as explicit functions of the channel Rayleigh number and the channel aspect ratio for air. The plate temperature is a weak function of Prandtl number for Prandtl numbers greater than 0.7, if the channel Rayleigh number is chosen as the correlating parameter. For Prandtl numbers less than 0.1, the plate temperature is a function of the channel Rayleigh number and the Prandtl number. A correlation for maximum temperature on the plate is presented to include the Prandtl number effect for large aspect ratio channels.


2018 ◽  
Vol 29 (10) ◽  
pp. 1850097 ◽  
Author(s):  
Abderrahmane Baïri ◽  
Najib Laraqi

This three-dimensional (3D) numerical work based on the volume control method quantifies the convective heat transfer occurring in a hemispherical cavity filled with a ZnO–H2O nanofluid saturated porous medium. Its main objective is to improve the cooling of an electronic component contained in this enclosure. The volume fraction of the considered monophasic nanofluid varies between 0% (pure water) and 10%, while the cupola is maintained isothermal at cold temperature. During operation, the active device generates a heat flux leading to high Rayleigh number reaching [Formula: see text] and may be inclined with respect to the horizontal plane at an angle ranging from 0[Formula: see text] to 180[Formula: see text] (horizontal position with cupola facing upwards and downwards, respectively) by steps of 15[Formula: see text]. The natural convective heat transfer represented by the average Nusselt number has been quantified for many configurations obtained by combining the tilt angle, the Rayleigh number, the nanofluid volume fraction and the ratio between the thermal conductivity of the porous medium’s solid matrix and that of the base fluid. This ratio has a significant influence on the free convective heat transfer and ranges from 0 (without porous media) to 70 in this work. The influence of the four physical parameters is analyzed and commented. An empirical correlation between the Nusselt number and these parameters is proposed, allowing determination of the average natural convective heat transfer occurring in the hemispherical cavity.


1972 ◽  
Vol 54 (1) ◽  
pp. 153-161 ◽  
Author(s):  
Enok Palm ◽  
Jan Erik Weber ◽  
Oddmund Kvernvold

For convection in a porous medium the dependence of the Nusselt number on the Rayleigh number is examined to sixth order using an expansion for the Rayleigh number proposed by Kuo (1961). The results show very good agreement with experiment. Additionally, the abrupt change which is observed in the heat transport at a supercritical Rayleigh number may be explained by a breakdown of Darcy's law.


Sign in / Sign up

Export Citation Format

Share Document