Hydrodynamic Lubrication in Simple Stretch Forming Processes

1984 ◽  
Vol 106 (1) ◽  
pp. 70-77 ◽  
Author(s):  
W. R. D. Wilson ◽  
J. J. Wang

Theoretical models for the hydrodynamic lubrication of plane strain and axisymmetric sheet metal stretch forming processes with cylindrical and spherical headed punches, respectively, are developed. The lubricant is treated as an isoviscous Newtonian liquid for both geometries. In addition, the influence of sheet heating due to plastic deformation with an exponential variation of viscosity with temperature is analyzed for the plane strain case.

1991 ◽  
Vol 113 (4) ◽  
pp. 659-666 ◽  
Author(s):  
W. R. D. Wilson ◽  
L. G. Hector

An improved theoretical model for the hydrodynamic lubrication of axisymmetric, sheet metal stretch forming is presented. The infinite initial film thickness problem, encountered in a previous model, is removed by accounting for the squeeze action occurring during the initial stages of the process. Both isoviscous and thermoviscous theories are developed assuming that the lubricant is a Newtonian fluid. In the thermoviscous model, the lubricant viscosity is assumed to vary exponentially with temperature. The influence of plastic heating of the sheet on the entrainment and transport of the lubricant film is examined. The effects of variable punch speed are also investigated.


1986 ◽  
Vol 53 (2) ◽  
pp. 440-449 ◽  
Author(s):  
Kuo-Kuang Chen ◽  
D. C. Sun

The existence and consequence of hydrodynamic lubrication in sheet metal forming is demonstrated using a model problem of hemispherical punch stretch forming. The problem is solved by incorporating a lubrication analysis into an incremental plasticity analysis. The sheet material is assumed to be elastic plastic with strain hardening, and the lubricant is assumed isoviscous. The study identifies two dimensionless parameters controlling the condition of lubrication. The resulting variable friction at the punch-sheet interface is found to affect significantly the distribution of strains in the sheet metal and its formability.


2013 ◽  
Vol 423-426 ◽  
pp. 737-740
Author(s):  
Zhong Yi Cai ◽  
Mi Wang ◽  
Chao Jie Che

A new stretch-forming process based on discretely loading for three-dimensional sheet metal part is proposed and numerically investigated. The gripping jaw in traditional stretch-forming process is replaced by the discrete array of loading units, and the stretching load is applied at discrete points on the two ends of sheet metal. By controlling the loading trajectory at the each discrete point, an optimal stretch-forming process can be realized. The numerical results on the new stretch-forming process of a saddle-shaped sheet metal part show that the distribution of the deformation on the formed surface of new process is more uniform than that of traditional stretch-forming, and the forming defects can be avoided and better forming quality will be obtained.


2014 ◽  
Vol 556-562 ◽  
pp. 460-463 ◽  
Author(s):  
Xue Chen ◽  
Ming Zhe Li ◽  
Wen Hua Liu ◽  
Zhi Qiang Hou

To solve the problem of low material utilization in traditional stretch forming process, a flexible stretch forming method was proposed, which can be realized by interaction of the multi-point stretch forming die with discrete-gripper stretch forming machine. The principle and characteristics of sheet metal flexible stretch forming technology was introduced, structural composition and working principle of the multi-point stretch forming die and discrete-gripper stretch forming machine were expounded, and the technology experiments was carried out with a self-designed flexible stretch forming technology equipment for sheet metal. The experimental results indicate that structure of multi-point stretch forming die and discrete-gripper stretch forming machine are reasonable, and flexible stretch forming technology can be realized by above-mentioned die and machine, stretch forming parts has a good quality and its shape error can satisfy requirements of production.


2021 ◽  
pp. 53-57
Author(s):  
A.L. Vorontsov

Determination of the deformed state of the workpiece at free extrusion of channels is considered. Formulas are obtained for determining the accumulated deformations at a given point of the plastic deformation zone and extruded walls of the product for any punch working stroke. Keywords: die forging, extrusion, misalignment, punch, matrix, plane strain, accumulated deformations, hardening. [email protected]


Author(s):  
Xinghui Han ◽  
Qiu Jin ◽  
Lin Hua

This study aims at exploring the potentialities of cold orbital forming in forming complex sheet metal. Aiming at a complex mobile phone shell component of aluminum alloy, two technical schemes for cold orbital forming are first presented. Then, the optimized one, i.e., the more complex inner surface of mobile phone shell is arranged to be formed by the rocking punch with a complex motion, is determined by analyzing the nonuniform plastic deformation laws and punch filling behaviors. On the basis of the optimized technical scheme, the blank geometry in cold orbital forming of mobile phone shell is also optimized based on the forming status of the most difficult forming zone. The consistent finite element (FE) simulated and experimental results indicate that under the optimized technical scheme, not only the bosses in the mobile phone shell are fully formed but also the obtained flow lines are reasonable, which proves that the technical scheme presented in this study is feasible and cold orbital forming exhibits huge potentialities in forming complex sheet metal.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 337 ◽  
Author(s):  
Jian Xing ◽  
Yan-yan Cheng ◽  
Zhuo Yi

To improve the effect of multi-point stretch forming of sheet metal, it is proposed in this paper to replace a fixed ball head with a swinging ball head. According to the multi-point dies with different arrangements, this research establishes finite element models of the following stretch forming, i.e., fixed ball heads with conventional arrangement, swinging ball heads with conventional arrangement, swinging ball heads with declining staggered arrangement, and swinging ball heads with parallel staggered arrangement, and then numerical simulation is performed. The simulation results show that by replacing a fixed ball head with a swinging ball head, the surface indentation of the part formed was effectively suppressed, the stress and tension strain distribution of the part formed was improved, and the forming quality was improved; the thickness of the elastic pad was reduced, the springback was reduced and the forming accuracy was improved; and when the ball head was applied to a multi-point die with staggered arrangement, a better forming result was achieved, where the best forming result was achieved in combining the swinging ball heads with the multi-point die with a parallel staggered arrangement. Forming experiments were carried out, and the experimental results were consistent with the trend of numerical simulation results, which verified the correctness of the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document