A Kinematic Model for Mechanical Seals With Antirotation Locks or Positive Drive Devices

1986 ◽  
Vol 108 (1) ◽  
pp. 42-45 ◽  
Author(s):  
I. Green ◽  
I. Etsion

A kinematic model of mechanical face seals is presented. Two basic seal arrangements are considered: a flexibly mounted stator with antirotation locks, and a flexibly mounted rotor with positive drive devices. The equation of kinematic constraint is derived and presented in a simple form for all the possible types of antirotation or positive drive mechanisms found in practical seals. This simple form is then used to derive the dynamic moments acting on the flexibly mounted element of the seal.

Author(s):  
Slawomir Blasiak

Noncontacting mechanical seals with various kinds of face surface modifications have established their position in the sealing technique. Over the last few years, a lot of works dedicated to the impact of various surface modifications on the dynamics of working rings have been created. This paper presents model studies regarding relatively unknown noncontacting impulse gas face seals. Here, a mathematical model of impulse gas face seals is developed including the nonlinear Reynolds equation and stator dynamics equations, which were solved simultaneously using numerical methods. An original computer software written in C + + language was developed. A number of numerical tests were conducted and the phenomena occurring in the radial gap during seal operation were analyzed. Final conclusions were drawn and several features were indicated characterizing impulse face seals. It should be emphasized that numerical research on this type of seals has not been published yet. The literature usually presents simplified models for the noncompressible medium, which can be solved with the use of analytical methods.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Christophe Minet ◽  
Noël Brunetière ◽  
Bernard Tournerie

Mechanical seals are commonly used in industrial applications. The main purpose of these components is to ensure the sealing of rotating shafts. Their optimal point of operation is obtained at the boundary between the mixed and hydrodynamic lubrication regimes. However, papers focused on this particular aspect in face seals are rather scarce compared with those dealing with other popular sealing devices. The present study thus proposes a numerical flow model of mixed lubrication in mechanical face seals. It achieves this by evaluating the influence of roughness on the performance of the seal. The choice of a deterministic approach has been made, this being justified by a review of the literature. A numerical model for the generation of random rough surfaces has been used prior to the flow model in order to give an accurate description of the surface roughness. The model takes cavitation effects into account and considers Hertzian asperity contact. Results for the model, including Stribeck curves, are presented as a function of the duty parameter.


1986 ◽  
Vol 108 (1) ◽  
pp. 46-52
Author(s):  
M. Kaneta ◽  
M. Fukahori

The mechanism of pumping action caused by axially vibrating one of the seal faces with continuous parallel film thickness is clarified experimentally. The results obtained in the experiment confirm the theory developed in a previous investigation [11]. The fundamental design principles of mechanical seals are also described from the viewpoint of this pumping phenomenon.


2008 ◽  
Vol 07 (02) ◽  
pp. 267-270 ◽  
Author(s):  
XIAO WANG ◽  
HUIXIA LIU ◽  
WEI CHEN ◽  
CHANGJING LIU ◽  
YONGHONG FU ◽  
...  

A mathematical model is established based on a modified Reynolds equation in polar coordinates, and solved by the multi-grid method to demonstrate the performance of micro-texturing mechanical seal surface. Sample cases of cylinder-shaped, square-shaped and diamond-shaped micro-asperity are studied to show the performance of micro-texturing mechanical seals. The results show that geometry has a vital influence on the friction coefficient and leakage. Diamond-shaped micro-texturing asperities have better performance than the others. And the performance is sensitive to the area density than the micro-texturing depth. The numerical approach can be a useful engineering tool, analyzing and optimizing the performance of micro-texturing mechanical face seals.


1987 ◽  
Vol 109 (1) ◽  
pp. 129-135 ◽  
Author(s):  
I. Green

The linearized fluid film dynamic coefficients, i.e., stiffness and damping, of flexibly-mounted rotor noncontacting mechanical face seals are found. The coefficients are derived from a previous study where the flexibly mounted element was the stator. The two cases of inward and outward flows, both having converging gaps in the direction of flow, are analyzed for the two mounting configurations, and it is found that the later case possesses higher angular stiffness.


Author(s):  
C P Scott ◽  
A J Craven ◽  
C J Gilmore ◽  
A W Bowen

The normal method of background subtraction in quantitative EELS analysis involves fitting an expression of the form I=AE-r to an energy window preceding the edge of interest; E is energy loss, A and r are fitting parameters. The calculated fit is then extrapolated under the edge, allowing the required signal to be extracted. In the case where the characteristic energy loss is small (E < 100eV), the background does not approximate to this simple form. One cause of this is multiple scattering. Even if the effects of multiple scattering are removed by deconvolution, it is not clear that the background from the recovered single scattering distribution follows this simple form, and, in any case, deconvolution can introduce artefacts.The above difficulties are particularly severe in the case of Al-Li alloys, where the Li K edge at ~52eV overlaps the Al L2,3 edge at ~72eV, and sharp plasmon peaks occur at intervals of ~15eV in the low loss region. An alternative background fitting technique, based on the work of Zanchi et al, has been tested on spectra taken from pure Al films, with a view to extending the analysis to Al-Li alloys.


1980 ◽  
Vol 41 (5) ◽  
pp. 604-611
Author(s):  
V. B Balyakin ◽  
◽  
S. V Falaleev ◽  
Keyword(s):  

Author(s):  
Lucas Kato ◽  
Tiago Pinto ◽  
Henrique Simas ◽  
Daniel Martins

2020 ◽  
Vol 8 (4) ◽  
pp. 276-286
Author(s):  
Vu Duc Quyen ◽  
Andrey Ronzhin

Three posterior algorithms NSGA-II, MOGWO and MOPSO to solve the problem of multicriteria optimization of the robotic gripper design are considered. The description of the kinematic model of the developed prototype of the four-fingered gripper for picking tomatoes, its limitations and objective functions used in the optimization of the design are given. The main advantage of the developed prototype is the use of one actuator for the control of the fingers and the suction nozzle. The results of optimization of the kinematic model and the dimensions of the elements of robotic gripper using the considered posterior algorithms are presented.


Sign in / Sign up

Export Citation Format

Share Document