Application of Porous Materials to Annular Plain Seals: Part 1—Static Characteristics

1989 ◽  
Vol 111 (4) ◽  
pp. 655-660 ◽  
Author(s):  
S. Kaneko

Porous materials are applied to the annular plain seals employed in pumps by insertion into the inlet part of the seal. The static characteristics of the seals with the porous materials are studied in the laminar-flow regime. The Reynolds equation for the fluid film in the seal clearance is modified to include a so-called filter term, and the pressure equation for the porous matrix is obtained from Darcy’s law and the continuity equation. These equations are applied to the system and are numerically solved with the pressure drop mainly due to the axial acceleration of liquid at the inlet end of the seal being taken into account. Results show that the annular plain seals with the porous materials have larger fluid film force component along the line of centers and smaller one perpendicular to the former than the ordinary solid seals.

2012 ◽  
Vol 155-156 ◽  
pp. 519-525
Author(s):  
Da Ying Li ◽  
Gui Yun Jiang

The restrictors of fluid lubricated sliding bearings play vital role in oil film rigidity and carrying capacity of bearings. The mathematical models for solution of the oil film static performance of the bearings with four different restrictors were presented and the numerical solution methods were analyzed. The solutions for oil film static characteristics in many aspects such as discretization of Reynolds equation, building clearance function, determinating boundary conditions, constructing continuity equation, deducing the models of oil inlet flow, solving the carrying capacity were conducted. The computational results show that the bearings with capillary or orifice restrictor have lower carrying capacity and oil film rigidity than those with sliding valve feedback or film feedback restrictors.


1990 ◽  
Vol 112 (4) ◽  
pp. 624-630 ◽  
Author(s):  
S. Kaneko

For improving the dynamic performance of the annular plain seals employed in pumps, porous materials are applied to the seal surface by insertion into the inlet part of the seal. The linear stiffness and damping coefficients of the seal film are calculated in the laminar-flow regime, assuming the mass effect of the fluid to be negligibly small. Numerical results show that the annular plain seals with the porous materials have larger main stiffness terms and smaller cross-coupled stiffness terms and main damping terms than the conventional ones with the solid surfaces. This tendency is more marked with increasing the axial length of the porous matrix applied to the seal surface. The larger main stiffness terms for “the porous seal” yield larger radial reaction force acting on a rotor as a consequence of small whirling motion of shaft about a centered position, which would contribute to rotor stability.


1994 ◽  
Vol 59 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Václav Dolejš ◽  
Ivan Machač ◽  
Petr Doleček

The paper presents a modification of the equations of Rabinowitsch-Mooney type for an approximate calculation of pressure drop in laminar flow of generalized Newtonian liquid through a straight channel whose cross section forms a simple continuous area. The suitability of the suggested procedure of calculation of pressure drop is demonstrated by the comparison of calculation results with both the published and original results of numerical solution and experiments.


2006 ◽  
Vol 128 (10) ◽  
pp. 1070-1080 ◽  
Author(s):  
Debashis Pramanik ◽  
Sujoy K. Saha

The heat transfer and the pressure drop characteristics of laminar flow of viscous oil through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and fitted with twisted tapes have been studied experimentally. The tapes have been full length, short length, and regularly spaced types. The transverse ribs in combination with full-length twisted tapes have been found to perform better than either ribs or twisted tapes acting alone. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow was periodically fully developed in the regularly spaced twisted-tape elements case and decaying swirl flow in the short-length twisted tapes case. The flow characteristics are governed by twist ratio, space ratio, and length of twisted tape, Reynolds number, Prandtl number, rod-to-tube diameter ratio, duct aspect ratio, rib height, and rib spacing. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of both constant pumping power and constant heat duty, the regularly spaced twisted-tape elements in specific cases perform marginally better than their full-length counterparts. However, the short-length twisted-tape performance is worse than the full-length twisted tapes. Therefore, full-length twisted tapes and regularly spaced twisted-tape elements in combination with transverse ribs are recommended for laminar flows. However, the short-length twisted tapes are not recommended.


Cryogenics ◽  
1980 ◽  
Vol 20 (10) ◽  
pp. 587-591 ◽  
Author(s):  
H. Appel ◽  
F.X. Eder

1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


Author(s):  
Jung Gu Lee ◽  
Alan Palazzolo

The Reynolds equation plays an important role for predicting pressure distributions for fluid film bearing analysis, One of the assumptions on the Reynolds equation is that the viscosity is independent of pressure. This assumption is still valid for most fluid film bearing applications, in which the maximum pressure is less than 1 GPa. However, in elastohydrodynamic lubrication (EHL) where the lubricant is subjected to extremely high pressure, this assumption should be reconsidered. The 2D modified Reynolds equation is derived in this study including pressure-dependent viscosity, The solutions of 2D modified Reynolds equation is compared with that of the classical Reynolds equation for the ball bearing case (elastic solids). The pressure distribution obtained from modified equation is slightly higher pressures than the classical Reynolds equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Arjumand Adil ◽  
Sonam Gupta ◽  
Pradyumna Ghosh

CFD simulation of the heat transfer and pressure drop characteristics of different nanofluids in a minichannel flow has been explained using FLUENT version 6.3.26. Different nanofluids with nanoparticles of Al2O3, CuO, SiO2, and TiO2have been used in the simulation process. A comparison of the experimental and computational results has been made for the heat transfer and pressure drop characteristics for the case of Al2O3-water nanofluid for the laminar flow. Also, computations have been made by considering Brownian motion as well as without considering Brownian motion of the nanoparticles. After verification of the computational model with the experimental results for Al2O3-water nanofluid, the simulations were performed for the same experimental readings for different nanofluids in the laminar flow regime to find out the heat transfer and pressure drop characteristics.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Hailong Cui ◽  
Huan Xia ◽  
Dajiang Lei ◽  
Xinjiang Zhang ◽  
Zhengyi Jiang

In this paper, a calculation method based on matlab partial differential equations (PDE) tool is proposed to investigate the static characteristics of aerostatic spherical bearings. The Reynolds equation of aerostatic spherical bearings is transformed into a standard elliptic equation. The effects of geometric parameters and operational conditions on the film pressure, bearing film force, and stiffness are studied. The axial and radial eccentricities result in different film pressure distributions; the bearing film force and stiffness are significantly influenced by geometric parameters and operational conditions. The relative optimal parameters are confirmed based on the calculation results. A comparison between the numerical and experimental results is also presented. The highest relative error between the numerical results and the experimental data is 11.3%; the calculation results show good agreements with the experimental data, thus verifying the accuracy of the calculation method used in this paper.


1999 ◽  
Author(s):  
Keizo Watanabe ◽  
Hiroshi Udagawa

Abstract By applying a highly water-repellent wall pipe in the drag reduction of polymer solutions, a flow system in which drag reduction is obtained in both laminar and turbulent flow ranges has been realized. Experiments were carried out to measure the pressure drop in pipes with a highly water-repellent wall and an acrylic resin wall by means of a pressure transducer. The diameter of the pipe was 6mm. The polymer solutions tested were PE015 aqueous solutions in the concentration range of 30ppm∼1000ppm. The drag reduction ratio for laminar flow was about 11∼15%. To understand this effect, the pressure drop was measured by using surfactant solutions and degassed water, and by pressurizing tap water in the pipeline. It was shown that the laminar drag reduction does not occur in the case of surfactant solutions although degassed water and pressurizing tap water in the pipeline have no effect on the reduction. In the laminar flow range, the friction factor of a power-law fluid with fluid slip was analyzed by applying the modified boundary condition on fluid slip at the pipe wall, and the analytical results agree with the experimental results in the low Reynolds number range.


Sign in / Sign up

Export Citation Format

Share Document