A Fundamental Equation for Exergy Balance on Solar Collectors

1988 ◽  
Vol 110 (2) ◽  
pp. 102-106 ◽  
Author(s):  
Akio Suzuki

This paper presents the exergy balance equation on a solar collector which acts as the fundamental and principal expression for the solar thermal design. The equation fully explains the exergy loss processes and can be used to derive the approximate optimum operating condition for solar collectors. Furthermore, using the equation, it can be shown that two different collectors, an evacuated tubular collector and a flat-plate collector, have both nearly equal capabilities in exergy gain despite large differences in technological efforts and expenses to produce them. In addition, ways for improvement for a solar collector are also discussed here briefly.

2018 ◽  
Vol 4 (3) ◽  
pp. 25 ◽  
Author(s):  
Daniel Ferrández ◽  
Carlos Moron ◽  
Jorge Pablo Díaz ◽  
Pablo Saiz

ResumenEl actual Código Técnico de la Edificación (CTE) pone de manifiesto la necesidad de cubrir parte de la demanda energética requerida para el abastecimiento de agua caliente sanitaria y climatización de piscinas cubiertas mediante sistemas de aprovechamiento de la energía solar térmica. En este artículo se presenta una comparativa entre las dos principales tipologías de captadores solares térmicos que existen en el mercado: el captador de placa plana y el captador de tubo de vacío, atendiendo a criterios de fracción solar, diseño e integración arquitectónica. Todo ello a fin de discernir en qué circunstancias es más favorable el uso de uno u otro sistema, comparando los resultados obtenidos mediante programas de simulación con la toma de medidas in situ.AbstractThe current Technical Building Code (CTE) highlights the need to cover part of the energy demand required for the supply of hot water and heating of indoor swimming pools using solar thermal systems. This article presents a comparison between the two main types of solar thermal collectors that exist in the market: the flat plate solar collector and the vacuum tube solar collector, according to criteria of solar fraction, design and architectural integration. All of this in order to discern in what circumstances the use of one or the other system is more favourable, comparing the results obtained through simulation programs with the taking of measurements in situ.


Author(s):  
Mohamed Nabeel A. Negm ◽  
Ahmed A. Abdel-Rehim ◽  
Ahmed A. A. Attia

The world is still dependent on fossil fuels as a continuous and stable energy source, but rising concerns for depletion of these fuels and the steady increase in demand for clean “green” energy have led to the rapid growth of the renewable energy field. As one of the most available energy sources with high energy conversion efficiency, solar energy is the most prominent of these energies as it also has the least effect on the environment. Flat plate collectors are the most common solar collectors, while their efficiency is limited by their absorber’s effectiveness in energy absorption and the transfer of this energy to the working fluid. The efficiency of flat plate solar collectors can be increased by using nanofluids as the working fluid. Nanofluids are a relatively recent development which can greatly enhance the thermophysical properties of working fluids. In the present study, the effect of using Al2O3/Water nanofluid as the working fluid on the efficiency of a thermosyphon flat-plate solar collector was experimentally investigated. The results of this experiment show an increase in efficiency when using nanofluids as the working fluid compared to distilled water. It was found that Al2O3/water nanofluids are a viable enhancement for the efficiency of flat-plate solar collectors.


2013 ◽  
Vol 368-370 ◽  
pp. 1228-1231
Author(s):  
Fen E Hu ◽  
Sheng Xian Wei ◽  
Neng Bang Hou

A solar radiation model to determine solar energy collection on solar collector array with different aspect ratios has been developed. The relations between the aspect ratio and the average daily solar radiation collection on the collector array have been deeply studied. The results show that there is an optimum aspect ratio to maximize the solar energy collection on the collector arrays. The optimum aspect ratios of the 1000 m2 collector array for Haikou, Kunming, Lhasa and Beijing are 10/1, 1/3, 5/1 and 10/1.The optimum aspect ratios of 1000 m2, 500 m2, 200 m2 and 100 m2 collector arrays for Kunming are 1/3, 3/1, 7/1 and 1/5, respectively.


2021 ◽  
pp. 173-173
Author(s):  
Yedilkhan Amirgaliyev ◽  
Murat Kunelbayev ◽  
Talgat Ormanov ◽  
Talgat Sundetov ◽  
Salauat Daulbayev

The given article considers results of experimental measurements, productivity comparison and master controller executive system of flat-plate solar collector with thermosiphon circulation and flat solar collector with special chemical coating. There has been developed master controllers control module, which receives data from temperature and lighting sensors, obtained in operation process. The aim of the research is getting the solar collectors? optimal parameters, representing maximal usage performance index, controllability, as well as, construction type, allowing energy saving. In the recent years flat-plate solar collectors with chemical coating are characterized with higher efficiency in real conditions usage. The developed master controllers? executive system is used for monitoring the installation?s main parameters, as well, it permits to compare characteristics of solar collector with thermosiphon circulation to those of flat-plate solar collector with chemical coating. The obtained experimental data has shown, that flat solar collectors, using chemical coating as a transfer medium in solar heat supply system, have an advantage in the context of usage effectiveness. The heat output and water heating in a flat solar collector are calculated, which vary depending on the intensity of solar radiation. The thermal efficiency of a flat solar collector with a thermosiphon tank based on the Mojo V3 platform using Dallas sensors is calculated.


Author(s):  
Rajeshkumar U. Sambhe ◽  
Sagar S. Gaddamwar

Cosmic power is one of the numerous renewable energy sources that can use in a Photovoltaic (PV) system or Thermal. Solar collectors play a crucial role in solar thermal systems. They convert solar radiation into heat and transfer the heat to working fluids Such as water or air. The Flat-plate collectors are the numerous common type of solar collectors and typically used as a water heater or air heater. These collectors have low efficiency and low outlet temperature. Recently, many scientists have attempted to improve the efficiency and performance of flat-plate collectors via different methods. This review paper describes the results of the experimentation carried out to study and compare the performance of the modified flat plate collector having increasing riser tube diameter and reducing riser tube length with the conventional ISI marked solar liquid flat plate collector. To study, the comparative performance characteristics of a modified flat plate collector with ISI flat plate collector operated under natural circulation mode. The suggested design found to be better than the existing ISI design of the absorber plate from an efficiency point of view. The actual useful heat gain (Qu) in the suggested design understudy found to be more by 30% than that in the case of ISI collector. However, the modified flat plate collector found to operate at a relatively lower exit temperature than the conventional ISI marked collector.


Author(s):  
Luqman Ahmed Pirzada ◽  
Xiaoli Wu . ◽  
Qaiser Ali ◽  
Asif Khateeb .

Solar energy is radiant light as a form of thermal heat energy which can be obtained and used by means of a variety of solar apparatus. As apparatus the flat and curved plate solar collector is specifically designed for assembling solar energy as a solar water heater system. The designing potency of this collector lone can generate medium level hot water from radiant sunlight source via absorbed plates. Standard type flat and curved plates solar collector plates are mostly used in remote coldest regions of the world where hot water is consumed for commercial and domestic purposes. These types of solar collector Plates can cheaply be manufactured compared to other solar panels like solar Shingles, Polycrystalline Solar Panels, Mono-crystalline Solar Panels, and Thin Film Solar Panels. For future work, this proposed pre-design is recommended for fabrication. A numerical study was carried-out on eight city locations in China by tracing their horizontal and vertical longitudinal, latitudinal lines noting the date, time and sunlight feeding of temperatures in the Celsius scale with the help of simulation and modeling tools like CFD, ANSYS FLUENT software, mesh geometry tools, and by using the Navier-Stokes and Continuity equations by fluid flow discharge rate, mass flow, water temperature and dropping of temperature, radiation working mechanisms, dimensions of water flowing tubes and absorber plates, density, the velocity of water as the working fluid, the viscosity of water in a cold and hot state as a process of Pre-design. Work also focuses on the comparison between flat plate collector and curved plate collector radiant sunlight absorption, As end result it is found the Curved plate collector produces 22% more elevated heat of outgoing water than flat plate collector.


2013 ◽  
Author(s):  
P. Rhushi Prasad ◽  
P. B. Gangavati ◽  
H. V. Byregowda ◽  
K. S. Badarinarayan

Now-a-days the field of applied mechanical systems opens new horizons for the use of orientation mechanisms. The opportunity to use mechanisms with a “sustainable purpose” leads to new approaches in the development of renewable energy systems design. The evaluation of the existing products shows that the tracking mechanisms for solar energy conversion systems may improve the efficiency of the solar energy conversion systems up to 30% to 50%. Applications of solar energy for domestic and industrial heating purposes have been becoming very popular. However the effectiveness of presently used fixed flat plate collectors, PV panels and parabolic collector are low due to the moving nature of the energy source. The presents research was carried out in the field of increasing the efficiency of the solar energy received by the solar collectors like PV panels, Flat plate collectors, Cylindrical Parabolic collectors using tracking systems by changing the position of the solar collectors correlated to the sun position for getting maximum radiation use of beam radiation falling on the solar collector. Two main aspects are taken into consideration, one optimizing the interaction between the mechatronic system components by integrating the analog electronic system by using a 555 timer in the mechanical model, and secondly by reducing the cost & time for the design process. The research work was carried out for location in chickballapur district at BGS R&D centre in Karnataka State, India. The results obtained in work is 24% increase in tracking efficiency of experimental model of flat plate collector, 30% increase in tracking efficiency in working model flat plate collector, 39 % increase in tracking efficiency of cylindrical parabolic collector and 36% increases in tracking efficiency of the Photovoltaic panel is found when compared to the non-tracking systems respectively. This paper presents the results of PV panel collector in detail for increasing the efficiency of the PV panel collector by tracking system with comparison of non-tracking system.


2015 ◽  
Author(s):  
Singiresu S. Rao

The optimum design of stationary flat-plate solar collectors is considered using the game theory approach for multiple objectives. The clear day solar beam radiation and diffuse radiation at the location of the solar collector are estimated. Three objectives are considered in the optimization problem formulation: maximization of the annual average incident solar energy, maximization of the lowest month incident solar energy and minimization of the cost. The game theory solution represents the best compromise in terms of the supercriterion selected. Because some design parameters such as solar constant, altitude, typical day of each month and most of the design variables are not precisely known, a probabilistic approach is also proposed in this work. The results obtained by the determinist and probabilistic approaches are compared. It is found that the absolute value of each objective function decreases with an increase in either the probability of constraint satisfaction or the coefficient of variation of the random variables. This work represents the first work aimed at the application of multi-objective optimization strategy, particularly the game theory approach, for the solution of the solar collector design problem.


2016 ◽  
Vol 831 ◽  
pp. 181-187 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Bartosz Dawidowicz ◽  
Aleksandra Popakul

Solar collectors is one of the technologies absorbing energy from solar beam and utilizing it for heating purposes, displacing the need to burn fossil fuels. There are many ways to improve effectiveness of the solar collectors [1,2]. Recent method to absorb more heat from the solar beam is to modify thermal characteristics of the working fluid. For this purpose one can use nanofluids, i.e. suspensions of metallic or nonmetallic nanoparticles in a base fluid [3].


Sign in / Sign up

Export Citation Format

Share Document