The Steady-State Response of a Cantilevered Rotor With Skew and Mass Unbalances

1983 ◽  
Vol 105 (4) ◽  
pp. 456-460 ◽  
Author(s):  
R. C. Benson

The steady state response of a cantilevered rotor with skew and mass unbalances is studied, with special attention to the effects due to skew. A disk misaligned with its drive shaft receives active gyroscopic moments which force pitch changes in the disk, much as mass unbalance centrifugal forces induce disk translation. These active gyroscopic moments affect the rotor in ways unpredicted by passive gryoscopics; that is to say the moments acting on a perfectly aligned disk which changes pitch solely due to its precession. Under the combined influences of disk skew and mass unbalance the precessing rotor exhibits an unconventional phase lag response, and it need not be in line with the mass unbalance at low spin rates. This can significantly alter rotor balancing procedures. Rotor critical speeds are studied for their number and severity, with results presented in a compact nondimensional form.

1997 ◽  
Vol 119 (1) ◽  
pp. 85-88 ◽  
Author(s):  
Chin-Shong Chen ◽  
S. Natsiavas ◽  
H. D. Nelson

The stability properties of periodic steady state response of a nonlinear geared rotordynamic system are investigated. The nonlinearity arises because one support of the system includes a cavitated squeeze film damper, while the excitation is caused by mass unbalance. The dynamical model and the procedure which leads to periodic steady state response of the system examined have been developed in an earlier paper. Here, the emphasis is placed on analyzing the stability characteristics of located periodic solutions. Also, within ranges of the excitation frequency where no stable periodic solutions are detected, the long time behavior of the system is investigated by direct integration of the equations of motion. It is shown that large order subharmonic, quasiperiodic and chaotic motions may coexist with unstable periodic response in these frequency ranges. Finally, attention is focused on practical consequences of these motions.


Author(s):  
T. N. Shiau ◽  
E. K. Lee ◽  
T. H. Young ◽  
W. C. Hsu

This paper investigates the dynamic behaviors of a geared rotor-bearing system mounted on viscoelastic supports under considerations of the gear eccentricity, excitation of the gear’s transmission error and the residual shaft bow. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The coupling effect of lateral and torsional motions is considered in the system dynamic analysis. The investigated dynamic characteristics include system natural frequencies and steady-state response. The results show that the mass, the stiffness and the loss factor of the viscoelastic support will significantly affect system critical speeds and steady-state response. Larger loss factor and more rigid stiffness of the viscoelastic supports will suppress the systematic amplitude of resonance. Parameters, which include magnitude of the residual bow and phase angle, are also considered in the investigation of their effects on system critical speeds and steady-state response. Results show that they have tremendous influence on first critical speed when the geared system mounted on stiff viscoelastic supports. The transmission error of the gear mesh is assumed to be sinusoidal with tooth passing frequency and it will induce multiple low resonant frequencies in the system response. It is observed that the excited critical speed equals to the original critical speed divided by gear tooth number.


2002 ◽  
Vol 13 (05) ◽  
pp. 260-269 ◽  
Author(s):  
Barbara Cone-Wesson ◽  
John Parker ◽  
Nina Swiderski ◽  
Field Rickards

Two studies were aimed at developing the auditory steady-state response (ASSR) for universal newborn hearing screening. First, neonates who had passed auditory brainstem response, transient evoked otoacoustic emission, and distortion-product otoacoustic emission tests were also tested with ASSRs using modulated tones that varied in frequency and level. Pass rates were highest (> 90%) for amplitude-modulated tones presented at levels ≥ 69 dB SPL. The effect of modulation frequency on ASSR for 500- and 2000-Hz tones was evaluated in full-term and premature infants in the second study. Full-term infants had higher pass rates for 2000-Hz tones amplitude modulated at 74 to 106 Hz compared with pass rates for a 500-Hz tone modulated at 58 to 90 Hz. Premature infants had lower pass rates than full-term infants for both carrier frequencies. Systematic investigation of ASSR threshold and the effect of modulation frequency in neonates is needed to adapt the technique for screening.


2021 ◽  
Vol 11 (4) ◽  
pp. 1717
Author(s):  
Gilberto Gonzalez Avalos ◽  
Noe Barrera Gallegos ◽  
Gerardo Ayala-Jaimes ◽  
Aaron Padilla Garcia

The direct determination of the steady state response for linear time invariant (LTI) systems modeled by multibond graphs is presented. Firstly, a multiport junction structure of a multibond graph in an integral causality assignment (MBGI) to get the state space of the system is introduced. By assigning a derivative causality to the multiport storage elements, the multibond graph in a derivative causality (MBGD) is proposed. Based on this MBGD, a theorem to obtain the steady state response is presented. Two case studies to get the steady state of the state variables are applied. Both cases are modeled by multibond graphs, and the symbolic determination of the steady state is obtained. The simulation results using the 20-SIM software are numerically verified.


2020 ◽  
pp. 155005942098270
Author(s):  
Sarah Ahmed ◽  
Jennifer R. Lepock ◽  
Romina Mizrahi ◽  
R. Michael Bagby ◽  
Cory J. Gerritsen ◽  
...  

Aim Deficits in synchronous, gamma-frequency neural oscillations may contribute to schizophrenia patients’ real-world functional impairment and can be measured electroencephalographically using the auditory steady-state response (ASSR). Gamma ASSR deficits have been reported in schizophrenia patients and individuals at clinical high risk (CHR) for developing psychosis. We hypothesized that, in CHR patients, gamma ASSR would correlate with real-world functioning, consistent with a role for gamma synchrony deficits in functional impairment. Methods A total of 35 CHR patients rated on Global Functioning: Social and Role scales had EEG recorded while listening to 1-ms, 93-dB clicks presented at 40 Hz in 500-ms trains, in response to which 40-Hz evoked power and intertrial phase-locking factor (PLF) were measured. Results In CHR patients, lower 40-Hz PLF correlated with lower social functioning. Conclusions Gamma synchrony deficits may be a biomarker of real-world impairment at early stages of the schizophrenia disease trajectory.


Sign in / Sign up

Export Citation Format

Share Document