Instability Due to Fluid Leakage of a Rotor System With Anisotropic Support

1989 ◽  
Vol 111 (1) ◽  
pp. 27-34
Author(s):  
J. H. Wang ◽  
M. T. Tsai

The instability caused by the fluid leakage leads to a limited performance of turbomachines. This instability may be improved by using flexible bearing supports with anisotropic stiffness. With a simplified model this effect is investigated including the influence of many parameters. The results show that the optimum range of anisotropy is strongly dependent on the parameters of rotor-bearing systems. In this paper an explanation from an energy point of view is presented to clarify the different stability behaviors with anisotropic bearing supports. Beside the simplified model, the stability of the complex rotor-bearing system with anisotropic bearing supports is investigated by the finite element model. An example of a typical 900 MW turbogenerator system is presented.

1988 ◽  
Vol 110 (4) ◽  
pp. 585-591
Author(s):  
Jhy-Horng Wang ◽  
Ming-Te Tsai

The instability caused by fluid leakage leads to limited performance in turbomachines. This instability may be improved by using flexible bearing supports with anisotropic stiffness. With a simplified model this effect is investigated, including the influence of many parameters. The results show that the optimum range of anistropy is strongly dependent on the parameters of the rotor-bearing system. In this paper an explanation from an energy point of view is presented to clarify the different stability behaviors with anisotropic bearing support.


Author(s):  
A. Alsaeed ◽  
G. Kirk ◽  
S. Bashmal

The aim of this study is to analytically design flexible damped bearing-supports in order to improve the dynamic characteristics of the rotor-bearing system. The finite-element model of the turbocharger rotor with linearized bearing dynamic coefficients is used to solve for the logarithmic decrements and hence the stability map. The design process attempts to find the optimum dynamic characteristics of the flexible damped bearing-support that would give best dynamic stability of the rotor-bearing system. The method is successful in greatly improving the dynamic stability of the turbocharger and may also lead to a total linear stability throughout the entire speed range when used besides the enhanced-performance hydrodynamic bearings.


Author(s):  
S. Chandraker ◽  
J. K. Dutt ◽  
H. Roy

In the last few decades, intensive research has been carried out on viscoelastic materials. Among them, most importantly polymers and composites thereof find extensive applications in engineering structures and rotors primarily due to quite high strength to weight ratio in comparison with metals. In dynamic modeling of rotor bearing system, incorporation of damping is very important as stationary (external) damping always helps in stability, however rotary damping (internal) promotes instability of rotors above a certain speed. Therefore for modeling point of view, it is very important to consider both internal or external damping effect. For this reason, the dissipation mechanism has been handled in such a way that it provides proper forces irrespective of its presence in a stationary or a rotary frame. Also in present work, both classical method and operator multiplier method are suggested to derive the equations of motion. The analysis also shows the stability zones of the rotor bearing system for various parametric values of different viscoelastic supports. It is found that choosing a right viscoelastic support can increase the stability criteria of the system to some extent.


1992 ◽  
Vol 114 (4) ◽  
pp. 465-475 ◽  
Author(s):  
An-Chen Lee ◽  
Yuan Kang ◽  
Kun-Lung Tsai ◽  
Kuo-Mo Hsiao

This paper deals with the transient vibration of asymmetric rotor systems during acceleration passing through several critical speeds at which synchronous or super-harmonic resonance occurs. The dynamic equations of the rotor-bearing system are formulated by the finite element model and the resulting dynamic equations are time-varying due to the effects of acceleration and asymmetry. In the formulation, a Timoshenko beam element is employed to simulate the rotating shaft and Eulerian angles are used to describe the orientations of the shaft element and disk. The numerical integration scheme for transient analysis is generated from the finite element model. Numerical examples are presented to illustrate (1) the effects of acceleration on peak amplitude and speed at which the peak occurs as the system passes through critical speeds, (2) the optimal acceleration process, which can be obtained by minimizing the peak response and the period of acceleration, (3) the speed regions where the transient instability exists.


Author(s):  
V. Ramamurti ◽  
D. A. Subramani ◽  
K. Sridhara

Abstract Stress analysis and determination of eigen pairs of a typical turbocharger compressor impeller have been carried out using the concept of cyclic symmetry. A simplified model treating the blade and the hub as isolated elements has also been attempted. The limitations of the simplified model have been brought out. The results of the finite element model using the cyclic symmetric approach have been discussed.


Author(s):  
H. R. Born

This paper presents an overview of the development of a reliable bearing system for a new line of small turbochargers where the bearing system has to be compatible with a new compressor and turbine design. The first part demonstrates how the increased weight of the turbine, due to a 40 % increase in flow capacity, influences the dynamic stability of the rotor-bearing system. The second part shows how stability can be improved by optimizing important floating ring parameters and by applying different bearing designs, such as profiled bore bearings supported on squeeze film dampers. Test results and stability analyses are included as well as the criteria which led to the decision to choose a squeeze film backed symmetrical 3-lobe bearing for this new turbocharger design.


1990 ◽  
Vol 112 (4) ◽  
pp. 439-444 ◽  
Author(s):  
J. H. Wang ◽  
F. M. Shih

Fluid leakage in blade tips in turbomachinery may induce instability and limit and output rating. In this work, the optimization technique has been used to find diameters of shaft elements and bearing supports so that the optimized rotor-bearing system can sustain a larger fluid leakage force. The results show that the threshold performance of rotor-bearing systems can be significantly improved by slight modifications of the shaft diameters. The results also indicate that the threshold performance can be improved more significantly by the combination of optimum bearing supports and optimum shaft diameters.


Author(s):  
Cristinel Mares ◽  
Cecilia Surace

Abstract In this paper, the possibility of updating the finite element model of a rotor-bearing system by estimating the bearing stiffness and damping coefficients from a few measured Frequency Response Functions using a Genetic Algorithm is investigated. The issues of identifiability and parameters estimation errors, computational costs and algorithm tuning are addressed. A simulated example of a flexible rotor supported by orthotropic bearings is used for illustrating the method.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Rui Zhu ◽  
Guang-chao Wang ◽  
Qing-peng Han ◽  
An-lei Zhao ◽  
Jian-xing Ren ◽  
...  

Rotor rub-impact has a great influence on the stability and safety of a rotating machine. This study develops a dynamic model of a two-span rotor-bearing system with rubbing faults, and numerical simulation is carried out. Moreover, frictional screws are used to simulate a rubbing state by establishing a set of experimental devices that can simulate rotor-stator friction in the rotor system. Through the experimental platform and its analysis system, the rubbing experiment was conducted, and the vibration of the rotor-bearing system before and after the critical speed is observed. Rotors running under normal condition, local slight rubbing, and severe rubbing throughout the entire cycle are simulated. Dynamic trajectories, frequency spectrum diagrams, chart of axis track, and Poincare maps are used to analyze the features of the rotor-bearing system with rub-impact faults under various parameters. The vibration characteristics of rub impact are obtained. Results show that the dynamic characteristics of the rotor-bearing system are affected by the change in velocity and degree of impact friction. The findings are helpful in further understanding the dynamic characteristics of the rub-impact fault of the two-span rotor-bearing system and provide reference for fault diagnosis.


2011 ◽  
Vol 2-3 ◽  
pp. 728-732
Author(s):  
Chao Feng Li ◽  
Guang Chao Liu ◽  
Qin Liang Li ◽  
Bang Chun Wen

Multiple freedom degrees model of rotor-bearing system taking many factors into account is established, the Newmark-β and shooting method are combined during the stability analysis of periodic motion in such system. The paper focused on the influence law of two eccentric phase difference on the instability speed of rotor-bearing system. The results have shown that the instability speed rises constantly with the eccentric phase difference angle increasing in small eccentricity system. When the two unbalance be in opposite direction, the system reached its maximum instability speed. However, the unstable bifurcation generates mutation phenomenon for large eccentricity system with the eccentric phase difference angle increasing. In summary, the larger initial phase angle can inhibit system instability partly. The conclusions have provided a theoretical reference for vibration control and stability design of the more complex rotor-bearing system.


Sign in / Sign up

Export Citation Format

Share Document