Axisymmetric Turbulent Boundary Layers in Zero Pressure-Gradient Flows

1972 ◽  
Vol 39 (1) ◽  
pp. 25-32 ◽  
Author(s):  
G. N. V. Rao ◽  
N. R. Keshavan

An experimental and theoretical study of the axisymmetric turbulent boundary layer on circular cylinders over a range of radius Reynolds numbers Ra from 425 to 2 × 105, suggests the existence of a law of the wall in the form u* = A log Y* + B, where Y* = (uτa/ν) log (r/a). The constant A depends only on Ra while B has been found to depend on Ra as well as auτ/ν. It was observed that from the beginning of transition to turbulent flow in the boundary layer, there was a “negative wake” region in the outer part of the boundary layer which progressively disappeared as the flow was swept downstream, giving, at some station, a velocity profile (called here the “marginal profile”), which had no wake component. Further downstream, there was progressively increasing positive wake component. In these regions, it is surmized that the penetration of the viscous effect from the wall to larger distances across the boundary layer (as indicated by the absence of a constant stress layer), as well as the probable effect of viscosity in the wake portion (as in a purely axisymmetric wake), yielded similarlity of the defect (U − u)/uτ, only in terms of the quantity (ruτ/ν) for a given Ra. From a study of the rate of decrease of Cf with Rx in laminar and turbulent flows, there is reason to believe that an initially turbulent boundary layer will undergo relaminarization if Ra is less than about 15,000 which may be compared with the stability limit of 11,000 found by Rao [6].

1965 ◽  
Vol 22 (2) ◽  
pp. 285-304 ◽  
Author(s):  
A. E. Perry ◽  
P. N. Joubert

The purpose of this paper is to provide some possible explantions for certain observed phenomena associated with the mean-velocity profile of a turbulent boundary layer which undergoes a rapid yawing. For the cases considered the yawing is caused by an obstruction attached to the wall upon which the boundary layer is developing. Only incompressible flow is considered.§1 of the paper is concerned with the outer region of the boundary layer and deals with a phenomenon observed by Johnston (1960) who described it with his triangular model for the polar plot of the velocity distribution. This was also observed by Hornung & Joubert (1963). It is shown here by a first-approximation analysis that such a behaviour is mainly a consequence of the geometry of the apparatus used. The analysis also indicates that, for these geometries, the outer part of the boundary-layer profile can be described by a single vector-similarity defect law rather than the vector ‘wall-wake’ model proposed by Coles (1956). The former model agrees well with the experimental results of Hornung & Joubert.In §2, the flow close to the wall is considered. Treating this region as an equilibrium layer and using similarity arguments, a three-dimensional version of the ‘law of the wall’ is derived. This relates the mean-velocity-vector distribution with the pressure-gradient vector and wall-shear-stress vector and explains how the profile skews near the wall. The theory is compared with Hornung & Joubert's experimental results. However at this stage the results are inconclusive because of the lack of a sufficient number of measured quantities.


2019 ◽  
Vol 865 ◽  
pp. 60-99 ◽  
Author(s):  
Mingbo Sun ◽  
Neil D. Sandham ◽  
Zhiwei Hu

Supersonic turbulent flows at Mach 2.7 over concave surfaces for two different radii of curvature were investigated and compared with a flat plate turbulent boundary layer using direct numerical simulations. The streamwise velocity reduces in the outer part of the boundary layer due to compression, while it increases near the wall due to curvature, with a higher shape factor for the concave cases. The near-wall spanwise streak spacing reduces compared to the flat plate, with large-scale streaks and turbulence amplification also observed. Streamwise velocity iso-surfaces and streamlines show the generation of Görtler-like vortices, consistent with significant centrifugal effects. Abundant small vortices are shown to be associated with large baroclinic production of vorticity that is caused by the density and pressure gradients that are associated with concave compression. Profiles of turbulent kinetic energy and turbulent Mach number exhibit a characteristic two-layer structure in the concave boundary layer cases. In the outer layer, turbulence is greatly amplified, whereas a local balance exists in the inner layer. Turbulent energy budget analysis shows that both production and dissipation increase near the concave wall, whereas in the outer part of the boundary layer, the production is increased and ultimately balanced by convection and turbulent transport.


1984 ◽  
Vol 143 ◽  
pp. 23-46 ◽  
Author(s):  
S. Agrawal ◽  
A. F. Messiter

The local interaction of an oblique shock wave with an unseparated turbulent boundary layer at a shallow two-dimensional compression corner is described by asymptotic expansions for small values of the non-dimensional friction velocity and the flow turning angle. It is assumed that the velocity-defect law and the law of the wall, adapted for compressible flow, provide an asymptotic representation of the mean velocity profile in the undisturbed boundary layer. Analytical solutions for the local mean-velocity and pressure distributions are derived in supersonic, hypersonic and transonic small-disturbance limits, with additional intermediate limits required at distances from the corner that are small in comparison with the boundary-layer thickness. The solutions describe small perturbations in an inviscid rotational flow, and show good agreement with available experimental data in most cases where effects of separation can be neglected. Calculation of the wall shear stress requires solution of the boundary-layer momentum equation in a sublayer which plays the role of a new thinner boundary layer but which is still much thicker than the wall layer. An analytical solution is derived with a mixing-length approximation, and is in qualitative agreement with one set of measured values.


2001 ◽  
Vol 448 ◽  
pp. 367-385 ◽  
Author(s):  
T. B. NICKELS ◽  
IVAN MARUSIC

This paper examines and compares spectral measurements from a turbulent round jet and a turbulent boundary layer. The conjecture that is examined is that both flows consist of coherent structures immersed in a background of isotropic turbulence. In the case of the jet, a single size of coherent structure is considered, whereas in the boundary layer there are a range of sizes of geometrically similar structures. The conjecture is examined by comparing experimental measurements of spectra for the two flows with the spectra calculated using models based on simple vortex structures. The universality of the small scales is considered by comparing high-wavenumber experimental spectra. It is shown that these simple structural models give a good account of the turbulent flows.


2021 ◽  
Vol 118 (34) ◽  
pp. e2111144118 ◽  
Author(s):  
Kevin Patrick Griffin ◽  
Lin Fu ◽  
Parviz Moin

In this work, a transformation, which maps the mean velocity profiles of compressible wall-bounded turbulent flows to the incompressible law of the wall, is proposed. Unlike existing approaches, the proposed transformation successfully collapses, without specific tuning, numerical simulation data from fully developed channel and pipe flows, and boundary layers with or without heat transfer. In all these cases, the transformation is successful across the entire inner layer of the boundary layer (including the viscous sublayer, buffer layer, and logarithmic layer), recovers the asymptotically exact near-wall behavior in the viscous sublayer, and is consistent with the near balance of turbulence production and dissipation in the logarithmic region of the boundary layer. The performance of the transformation is verified for compressible wall-bounded flows with edge Mach numbers ranging from 0 to 15 and friction Reynolds numbers ranging from 200 to 2,000. Based on physical arguments, we show that such a general transformation exists for compressible wall-bounded turbulence regardless of the wall thermal condition.


1977 ◽  
Vol 99 (3) ◽  
pp. 486-493 ◽  
Author(s):  
O. Gu¨ven ◽  
V. C. Patel ◽  
C. Farell

A simple analytical model for two-dimensional mean flow at very large Reynolds numbers around a circular cylinder with distributed roughness is presented and the results of the theory are compared with experiment. The theory uses the wake-source potential-flow model of Parkinson and Jandali together with an extension to the case of rough-walled circular cylinders of the Stratford-Townsend theory for turbulent boundary-layer separation. In addition, a semi-empirical relation between the base-pressure coefficient and the location of separation is used. Calculation of the boundary-layer development, needed as part of the theory, is accomplished using an integral method, taking into account the influence of surface roughness on the laminar boundary layer and transition as well as on the turbulent boundary layer. Good agreement with experiment is shown by the results of the theory. The significant effects of surface roughness on the mean-pressure distribution on a circular cylinder at large Reynolds numbers and the physical mechanisms giving rise to these effects are demonstrated by the model.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1068
Author(s):  
Shujin Laima ◽  
Hehe Ren ◽  
Hui Li ◽  
Jinping Ou

Coherent structures in the turbulent boundary layer were investigated under different stability conditions. Qualitative analyses of the flow field, spatial correlation coefficient field and pre-multiplied wind velocity spectrum showed that the dominant turbulent eddy structure changed from small-scale motions to large- and very-large-scale motions and then to thermal plumes as the stability changed from strong stable to neutral and then to strong unstable. A quantitative analysis of the size characteristics of the three-dimensional turbulent eddy structure based on the spatial correlation coefficient field showed that under near-neutral stability, the streamwise, wall-normal and spanwise extents remained constant at approximately 0.3 δ , 0.1 δ and 0.2 δ ( δ , boundary layer height), respectively, while for other conditions, the extent in each direction varied in a log-linear manner with stability; only the spanwise extent under stable conditions was also independent of stability. The peak wavenumber of the pre-multiplied wind velocity spectrum moves towards small values from stable conditions to neutral condition and then to unstable conditions; thus, for the wind velocity spectrum, another form is needed that takes account the effects of the stability condition.


2019 ◽  
Vol 874 ◽  
pp. 720-755 ◽  
Author(s):  
Rishabh Ishar ◽  
Eurika Kaiser ◽  
Marek Morzyński ◽  
Daniel Fernex ◽  
Richard Semaan ◽  
...  

We present the first general metric for attractor overlap (MAO) facilitating an unsupervised comparison of flow data sets. The starting point is two or more attractors, i.e. ensembles of states representing different operating conditions. The proposed metric generalizes the standard Hilbert-space distance between two snapshot-to-snapshot ensembles of two attractors. A reduced-order analysis for big data and many attractors is enabled by coarse graining the snapshots into representative clusters with corresponding centroids and population probabilities. For a large number of attractors, MAO is augmented by proximity maps for the snapshots, the centroids and the attractors, giving scientifically interpretable visual access to the closeness of the states. The coherent structures belonging to the overlap and disjoint states between these attractors are distilled by a few representative centroids. We employ MAO for two quite different actuated flow configurations: a two-dimensional wake with vortices in a narrow frequency range and three-dimensional wall turbulence with a broadband spectrum. In the first application, seven control laws are applied to the fluidic pinball, i.e. the two-dimensional flow around three circular cylinders whose centres form an equilateral triangle pointing in the upstream direction. These seven operating conditions comprise unforced shedding, boat tailing, base bleed, high- and low-frequency forcing as well as two opposing Magnus effects. In the second example, MAO is applied to three-dimensional simulation data from an open-loop drag reduction study of a turbulent boundary layer. The actuation mechanisms of 38 spanwise travelling transversal surface waves are investigated. MAO compares and classifies these actuated flows in agreement with physical intuition. For instance, the first feature coordinate of the attractor proximity map correlates with drag for the fluidic pinball and for the turbulent boundary layer. MAO has a large spectrum of potential applications ranging from a quantitative comparison between numerical simulations and experimental particle-image velocimetry data to the analysis of simulations representing a myriad of different operating conditions.


Sign in / Sign up

Export Citation Format

Share Document