scholarly journals Turbulence structures and statistics of a supersonic turbulent boundary layer subjected to concave surface curvature

2019 ◽  
Vol 865 ◽  
pp. 60-99 ◽  
Author(s):  
Mingbo Sun ◽  
Neil D. Sandham ◽  
Zhiwei Hu

Supersonic turbulent flows at Mach 2.7 over concave surfaces for two different radii of curvature were investigated and compared with a flat plate turbulent boundary layer using direct numerical simulations. The streamwise velocity reduces in the outer part of the boundary layer due to compression, while it increases near the wall due to curvature, with a higher shape factor for the concave cases. The near-wall spanwise streak spacing reduces compared to the flat plate, with large-scale streaks and turbulence amplification also observed. Streamwise velocity iso-surfaces and streamlines show the generation of Görtler-like vortices, consistent with significant centrifugal effects. Abundant small vortices are shown to be associated with large baroclinic production of vorticity that is caused by the density and pressure gradients that are associated with concave compression. Profiles of turbulent kinetic energy and turbulent Mach number exhibit a characteristic two-layer structure in the concave boundary layer cases. In the outer layer, turbulence is greatly amplified, whereas a local balance exists in the inner layer. Turbulent energy budget analysis shows that both production and dissipation increase near the concave wall, whereas in the outer part of the boundary layer, the production is increased and ultimately balanced by convection and turbulent transport.

2018 ◽  
Vol 858 ◽  
pp. 609-633 ◽  
Author(s):  
Juan Carlos Cuevas Bautista ◽  
Alireza Ebadi ◽  
Christopher M. White ◽  
Gregory P. Chini ◽  
Joseph C. Klewicki

Recent studies reveal that at large friction Reynolds number $\unicode[STIX]{x1D6FF}^{+}$ the inertially dominated region of the turbulent boundary layer is composed of large-scale zones of nearly uniform momentum segregated by narrow fissures of concentrated vorticity. Experiments show that, when scaled by the boundary-layer thickness, the fissure thickness is $\mathit{O}(1/\sqrt{\unicode[STIX]{x1D6FF}^{+}})$, while the dimensional jump in streamwise velocity across each fissure scales in proportion to the friction velocity $u_{\unicode[STIX]{x1D70F}}$. A simple model that exploits these essential elements of the turbulent boundary-layer structure at large $\unicode[STIX]{x1D6FF}^{+}$ is developed. First, a master wall-normal profile of streamwise velocity is constructed by placing a discrete number of fissures across the boundary layer. The number of fissures and their wall-normal locations follow scalings informed by analysis of the mean momentum equation. The fissures are then randomly displaced in the wall-normal direction, exchanging momentum as they move, to create an instantaneous velocity profile. This process is repeated to generate ensembles of streamwise velocity profiles from which statistical moments are computed. The modelled statistical profiles are shown to agree remarkably well with those acquired from direct numerical simulations of turbulent channel flow at large $\unicode[STIX]{x1D6FF}^{+}$. In particular, the model robustly reproduces the empirically observed sub-Gaussian behaviour for the skewness and kurtosis profiles over a large range of input parameters.


1972 ◽  
Vol 39 (1) ◽  
pp. 25-32 ◽  
Author(s):  
G. N. V. Rao ◽  
N. R. Keshavan

An experimental and theoretical study of the axisymmetric turbulent boundary layer on circular cylinders over a range of radius Reynolds numbers Ra from 425 to 2 × 105, suggests the existence of a law of the wall in the form u* = A log Y* + B, where Y* = (uτa/ν) log (r/a). The constant A depends only on Ra while B has been found to depend on Ra as well as auτ/ν. It was observed that from the beginning of transition to turbulent flow in the boundary layer, there was a “negative wake” region in the outer part of the boundary layer which progressively disappeared as the flow was swept downstream, giving, at some station, a velocity profile (called here the “marginal profile”), which had no wake component. Further downstream, there was progressively increasing positive wake component. In these regions, it is surmized that the penetration of the viscous effect from the wall to larger distances across the boundary layer (as indicated by the absence of a constant stress layer), as well as the probable effect of viscosity in the wake portion (as in a purely axisymmetric wake), yielded similarlity of the defect (U − u)/uτ, only in terms of the quantity (ruτ/ν) for a given Ra. From a study of the rate of decrease of Cf with Rx in laminar and turbulent flows, there is reason to believe that an initially turbulent boundary layer will undergo relaminarization if Ra is less than about 15,000 which may be compared with the stability limit of 11,000 found by Rao [6].


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 286
Author(s):  
Shaurya Shrivastava ◽  
Theresa Saxton-Fox

The preferential organisation of coherent vortices in a turbulent boundary layer in relation to local large-scale streamwise velocity features was investigated. Coherent vortices were identified in the wake region using the Triple Decomposition Method (originally proposed by Kolář) from 2D particle image velocimetry (PIV) data of a canonical turbulent boundary layer. Two different approaches, based on conditional averaging and quantitative statistical analysis, were used to analyze the data. The large-scale streamwise velocity field was first conditionally averaged on the height of the detected coherent vortices and a change in the sign of the average large scale streamwise fluctuating velocity was seen depending on the height of the vortex core. A correlation coefficient was then defined to quantify this relationship between the height of coherent vortices and local large-scale streamwise fluctuating velocity. Both of these results indicated a strong negative correlation in the wake region of the boundary layer between vortex height and large-scale velocity. The relationship between vortex height and full large-scale velocity isocontours was also studied and a conceptual model based on the findings of the study was proposed. The results served to relate the hairpin vortex model of Adrian et al. to the scale interaction results reported by Mathis et al., and Chung and McKeon.


1997 ◽  
Vol 119 (3) ◽  
pp. 562-568 ◽  
Author(s):  
R. J. Volino ◽  
T. W. Simon

The laminar-turbulent transition process has been documented in a concave-wall boundary layer subject to low (0.6 percent) free-stream turbulence intensity. Transition began at a Reynolds number, Rex (based on distance from the leading edge of the test wall), of 3.5 × 105 and was completed by 4.7 × 105. The transition was strongly influenced by the presence of stationary, streamwise, Go¨rtler vortices. Transition under similar conditions has been documented in previous studies, but because concave-wall transition tends to be rapid, measurements within the transition zone were sparse. In this study, emphasis is on measurements within the zone of intermittent flow. Twenty-five profiles of mean streamwise velocity, fluctuating streamwise velocity, and intermittency have been acquired at five values of Rex, and five spanwise locations relative to a Go¨rtler vortex. The mean velocity profiles acquired near the vortex downwash sites exhibit inflection points and local minima. These minima, located in the outer part of the boundary layer, provide evidence of a “tilting” of the vortices in the spanwise direction. Profiles of fluctuating velocity and intermittency exhibit peaks near the locations of the minima in the mean velocity profiles. These peaks indicate that turbulence is generated in regions of high shear, which are relatively far from the wall. The transition mechanism in this flow is different from that on flat walls, where turbulence is produced in the near-wall region. The peak intermittency values in the profiles increase with Rex, but do not follow the “universal” distribution observed in most flat-wall, transitional boundary layers. The results have applications whenever strong concave curvature may result in the formation of Go¨rtler vortices in otherwise 2-D flows.


2001 ◽  
Vol 124 (1) ◽  
pp. 127-135 ◽  
Author(s):  
L. Keirsbulck ◽  
L. Labraga ◽  
A. Mazouz ◽  
C. Tournier

A turbulent boundary layer structure which develop over a k-type rough wall displays several differences with those found on a smooth surface. The magnitude of the wake strength depends on the wall roughness. In the near-wall region, the contribution to the Reynolds shear stress fraction, corresponding to each event, strongly depends on the wall roughness. In the wall region, the diffusion factors are influenced by the wall roughness where the sweep events largely dominate the ejection events. This trend is reversed for the smooth-wall. Particle Image Velocimetry technique (PIV) is used to obtain the fluctuating flow field in the turbulent boundary layer in order to confirm this behavior. The energy budget analysis shows that the main difference between rough- and smooth-walls appears near the wall where the transport terms are larger for smooth-wall. Vertical and longitudinal turbulent flux of the shear stress on both smooth and rough surfaces is compared to those predicted by a turbulence model. The present results confirm that any turbulence model must take into account the effects of the surface roughness.


1976 ◽  
Vol 76 (1) ◽  
pp. 89-112 ◽  
Author(s):  
R. F. Blackwelder ◽  
R. E. Kaplan

The wall structure of the turbulent boundary layer was examined using hot-wire rakes and conditional sampling techniques. Instantaneous velocity measurements indicate a high degree of coherence over a considerable area in the direction normal to the wall. Aty+= 15, there is some evidence of large-scale correlation in the spanwise direction, but almost no indication of the streamwise streaks that exist in the lower regions of the boundary layer. Conditional sampling showed that the normal velocity is directed outwards in regions of strong stream-wise-momentum deficit, and inwards when the streamwise velocity exceeds its mean value. The conditionally averaged Reynolds shear stress was approximately an order of magnitude greater than its conventionally averaged value and decayed slowly downstream.


2018 ◽  
Vol 846 ◽  
pp. 292-317 ◽  
Author(s):  
K. M. Talluru ◽  
J. Philip ◽  
K. A. Chauhan

Simultaneous measurements of streamwise velocity ($\tilde{U}$) and concentration ($\tilde{C}$) for a horizontal plume released at eight different vertical locations within a turbulent boundary layer are discussed in this paper. These are supplemented by limited simultaneous three-component velocity and concentration measurements. Results of the integral time scale ($\unicode[STIX]{x1D70F}_{c}$) of concentration fluctuations across the width of the plume are presented here for the first time. It is found that$\unicode[STIX]{x1D70F}_{c}$has two distinct peaks: one closer to the plume centreline and the other at a vertical distance of plume half-width above the centreline. The time-averaged streamwise concentration flux is found to be positive and negative, respectively, below and above the plume centreline. This behaviour is a resultant of wall-normal velocity fluctuations ($w$) and Reynolds shear stress ($\overline{uw}$). Confirmation of these observations is found in the results of joint probability density functions of$u$(streamwise velocity fluctuations) and$\tilde{C}$as well as that of$w$and$\tilde{C}$. Results of cross-correlation coefficient show that high- and low-momentum regions have a distinctive role in the transport of passive scalar. Above the plume centreline, low-speed structures have a lead over the meandering plume, while high-momentum regions are seen to lag behind the plume below its centreline. Further examination of the phase relationship between time-varying$u$and$c$(concentration fluctuations) via cross-spectrum analysis is consistent with this observation. Based on these observations, a phenomenological model is presented for the relative arrangement of a passive scalar plume with respect to large-scale velocity structures in the flow.


1975 ◽  
Vol 26 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Ronald M C So ◽  
George L Mellor

SummaryThe present experiment describes the behaviour of a turbulent boundary layer on a concave wall. At the onset of curvature there appears a fairly coherent wavelike transverse profile of mean velocity. This disturbance might be interpreted as a kind of large scale Taylor-Görtler type instability superimposed on a conventional turbulent boundary layer; further downstream the coherence degenerates as the turbulence level increases. Boundary-layer profile measurements were made at positions of maxima and minima of transverse profiles of (U-component) mean velocity. The boundary layer at the minima positions is found to be twice as thick as that at the maxima positions. Also, turbulent intensities inside the boundary layer are substantially increased as a result of the concave curvature of the surface.


1995 ◽  
Vol 286 ◽  
pp. 137-171 ◽  
Author(s):  
Stephen R. Snarski ◽  
Richard M. Lueptow

Measurements of wall pressure and streamwise velocity fluctuations in a turbulent boundary layer on a cylinder in an axial air flow (δ/a = 5.04, Reθ = 2870) have been used to investigate the turbulent flow structures in the cylindrical boundary layer that contribute to the fluctuating pressure at the wall in an effort to deduce the effect of transverse curvature on the structure of boundary layer turbulence. Wall pressure was measured at a single location with a subminiature electret condenser microphone, and the velocity was measured throughout a large volume of the boundary layer with a hotwire probe. Auto- and cross-spectral densities, cross-correlations, and conditional sampling of the pressure and streamwise velocity indicate that two primary groups of flow disturbances contribute to the fluctuating pressure at the wall: (i) low-frequency large-scale structures with dynamical significance across the entire boundary layer that are consistent with a pair of large-scale spanwise-oriented counter-rotating vortices and (ii) higher frequency small-scale disturbances concentrated close to the wall that are associated with the burst-sweep cycle and are responsible for the short-duration large-amplitude wall pressure fluctuations. A bidirectional relationship was found to exist between both positive and negative pressure peaks and the temporal derivative of u near the wall. Because the frequency of the large-scale disturbance observed across the boundary layer is consistent with the bursting frequency deduced from the average time between bursts, the burst-sweep cycle appears to be linked to the outer motion. A stretching of the large-scale structures very near the wall, as suggested by space-time correlation convection velocity results, may provide the coupling mechanism. Since the high-frequency disturbance observed near the wall is consistent with the characteristic frequency deduced from the average duration of bursting events, the bursting process provides the two characteristic time scales responsible for the bimodal distribution of energy near the wall. Because many of the observed structural features of the cylindrical boundary layer are similar to those observed in flat-plate turbulent boundary layers, transverse curvature appears to have little effect on the fundamental turbulent structure of the boundary layer for the moderate transverse curvature ratio used in this investigation. From differences that exist between the turbulence intensity, skewness, and spectra of the streamwise velocity, however, it appears that transverse curvature may enhance (i.e. energize) the large-scale motion owing to the reduced constraint imposed on the flow by the smaller cylindrical wall.


Sign in / Sign up

Export Citation Format

Share Document