Penetration of a Half Space by a Rectangular Cylinder

1979 ◽  
Vol 46 (3) ◽  
pp. 587-591 ◽  
Author(s):  
A. Cemal Eringen ◽  
F. Balta

The stress and displacement fields are determined in an elastic half space loaded by a rectangular frictionless, rigid block normally at its surface. The semi-infinite solid is considered to be an elastic solid with nonlocal interatomic interaction. The field equations of the nonlocal elasticity and boundary conditions are employed to treat this contact problem. Interestingly the classical stress singularity at the edges of the block are not present in the nonlocal solutions. Consequently the critical applied load for the initiation of penetration of the rigid cylinder into the semi-infinite solid can be determined without recourse to any criterion foreign to the theory. The stress field obtained is valid even for penetrators of submicroscopic width.

1996 ◽  
Vol 63 (2) ◽  
pp. 245-251 ◽  
Author(s):  
J. R. Barber

Closed-form expressions are obtained for the normal surface displacements due to a normal point force moving at constant speed over the surface of an elastic half-space. The Smirnov-Sobolev technique is used to reduce the problem to a linear superposition of two-dimensional stress and displacement fields.


1965 ◽  
Vol 32 (2) ◽  
pp. 411-417 ◽  
Author(s):  
R. A. Westmann

Solutions are presented, within the scope of classical elastostatics, for a class of asymmetric mixed boundary-value problems of the elastic half-space. The boundary conditions considered are prescribed interior and exterior to a circle and are mixed with respect to shears and tangential displacements. Using an established integral-solution form, the problem is reduced to two pairs of simultaneous dual integral equations for which the solution is known. Two illustrative examples, motivated by problems in fracture mechanics, are presented; the resulting stress and displacement fields are given in closed form.


Author(s):  
Zhanjiang Wang ◽  
Xiaoqing Jin ◽  
Leon M. Keer ◽  
Qian Wang

When solving the problems involving inhomogeneous materials, the influence of the inhomogeneity upon contact behavior should be properly considered. This research proposes a fast and novel method, based on the equivalent inclusion method where inhomogeneity is replaced by an inclusion with properly chosen eigenstrains, to simulate contact partial slip of the interface involving inhomogeneous materials. The total stress and displacement fields represent the superposition of homogeneous solutions and perturbed solutions due to the chosen eigenstrains. In the present numerical simulation, the half space is meshed into a number of cuboids of the same size, where each cuboid is has a uniform eigenstrain. The stress and displacement fields due to eigenstrains are formulated by employing the recent half-space inclusion solutions derived by the authors and solved using a three-dimensional fast Fourier transform algorithm. The partial slip contact between an elastic ball and an elastic half space containing a cuboidal inhomogeneity was investigated.


1989 ◽  
Vol 111 (4) ◽  
pp. 243-248 ◽  
Author(s):  
T. Hattori ◽  
S. Sakata ◽  
G. Murakami

Since the stress and displacement fields near a bonding edge show singularity behaviors, the adhesive strength evaluation method, using maximum stresses calculated by a numerical stress analysis such as the finite element method, is generally not valid. In this paper, a new method, which uses two stress singularity parameters, is presented for evaluating adhesive strength. This method is applied to several kinds of molded models, composed of epoxy base resin and Fe-Ni alloy sheets, and plastic encapsulated LSI models. Predictions about the initiation and extension of delamination are compared with the results of observations made by scanning acoustic tomography on these models.


1964 ◽  
Vol 54 (2) ◽  
pp. 627-679
Author(s):  
David G. Harkrider

ABSTRACT A matrix formulation is used to derive integral expressions for the time transformed displacement fields produced by simple sources at any depth in a multilayered elastic isotropic solid half-space. The integrals are evaluated for their residue contribution to obtain surface wave displacements in the frequency domain. The solutions are then generalized to include the effect of a surface liquid layer. The theory includes the effect of layering and source depth for the following: (1) Rayleigh waves from an explosive source, (2) Rayleigh waves from a vertical point force, (3) Rayleigh and Love waves from a vertical strike slip fault model. The latter source also includes the effect of fault dimensions and rupture velocity. From these results we are able to show certain reciprocity relations for surface waves which had been previously proved for the total displacement field. The theory presented here lays the ground work for later papers in which theoretical seismograms are compared with observations in both the time and frequency domain.


2017 ◽  
Vol 22 (2) ◽  
pp. 415-426
Author(s):  
M. Sethi ◽  
A. Sharma ◽  
A. Vasishth

AbstractThe present paper deals with the mathematical modeling of the propagation of torsional surface waves in a non-homogeneous transverse isotropic elastic half-space under a rigid layer. Both rigidities and density of the half-space are assumed to vary inversely linearly with depth. Separation of variable method has been used to get the analytical solutions for the dispersion equation of the torsional surface waves. Also, the effects of nonhomogeneities on the phase velocity of torsional surface waves have been shown graphically. Also, dispersion equations have been derived for some particular cases, which are in complete agreement with some classical results.


1976 ◽  
Vol 43 (1) ◽  
pp. 39-42 ◽  
Author(s):  
B. E. Bennett ◽  
G. Herrmann

A class of dynamic problems involving a semi-infinite elastic solid with an overlying semi-infinite acoustic fluid, subjected at the plane interface to arbitrary normal loading is investigated. A method of solution is proposed which reduces the class of problems under study to that in which the fluid is absent. This latter class has received considerable consideration in the past. A specific example is presented for an expanding disk-shaped load including numerical results for the subseismic range.


1980 ◽  
Vol 15 (2) ◽  
pp. 53-62 ◽  
Author(s):  
J W Ivering

The analysis of the bond stress of a thick-walled tube embedded at the surface of an elastic, isotropic, semi-infinite medium is presented. The condition of three-dimensional compatibility between the tube and the anchorage medium is taken into account. An equilibrium equation for a segment of an embedded tube is derived, from which bond stresses acting on the tube can be computed. The general solution obtained relates to the vector function for a uniform lineal load acting perpendicularly to the surface of an elastic half-space. The solution is in agreement with equations derived independently for cases of one-dimensional (lineal) compatibility. The equation of equilibrium derived for a tube segment embedded at the surface of an elastic half-space is transformed to a form suitable for solving the bond stresses of a tube anchorage embedded at some distance from the surface. A numerical solution of bond stresses obtained by elastic analysis is compared to the bond stress curve along the anchorage obtained experimentally.


2003 ◽  
Vol 70 (6) ◽  
pp. 825-831 ◽  
Author(s):  
H. Hasegawa ◽  
M. Kisaki

Exact solutions are presented in closed form for the axisymmetric stress and displacement fields caused by a circular solid cylindrical inclusion with uniform eigenstrain in a transversely isotropic elastic solid. This is an extension of a previous paper for an isotropic elastic solid to a transversely isotropic solid. The strain energy is also shown. The method of Green’s functions is used. The numerical results for stress distributions are compared with those for an isotropic elastic solid.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Zhanjiang Wang ◽  
Xiaoqing Jin ◽  
Leon M. Keer ◽  
Qian Wang

Contacts involving partial slip are commonly found at the interfaces formed by mechanical components. However, most theoretical investigations of partial slip are limited to homogeneous materials. This work proposes a novel and fast method for partial-slip contact involving a material with an inhomogeneity based on the equivalent inclusion method, where the inhomogeneity is replaced by an inclusion with properly chosen eigenstrains. The stress and displacement fields due to eigenstrains are formulated based on the half-space inclusion solutions recently derived by the authors and solved with a three-dimensional fast Fourier transform algorithm. The effectiveness and accuracy of the proposed method is demonstrated by comparing its solutions with those from the finite element method. The partial slip contact between an elastic ball and an elastic half space containing a cuboidal inhomogeneity is further investigated. A number of in-depth parametric studies are performed for the cuboidal inhomogeneity with different sizes and at different locations. The results reveal that the contact behavior of the inhomogeneous material is more strongly influenced by the inhomogeneity when it is closer to the contact center and when its size is larger.


Sign in / Sign up

Export Citation Format

Share Document