On the Transition of a Shaft Through Critical Speeds

1977 ◽  
Vol 99 (1) ◽  
pp. 48-50
Author(s):  
B. M. Naveh ◽  
R. M. Brach

The motion of an eccentric rotating shaft and disk is studied for an exponential transition of the angular velocity (spin rale) through a critical speed. An analytical solution is found for the response, and it is shown that this response can yield higher amplitudes when compared to previous work where the angular velocity is varied linearly.

In practice in many cases of flow through fine annular clearances, the inner boundary consists of a bush keyed to a rotating shaft, and in the investigation about to be described, it was found that up to a certain critical speed of rotation the resistance to flow is unaffected, but above this speed the resistance increases as the speed increases. Curves are given by means of which the critical angular velocity and the resistance at higher angular velocities can be ascertained for the range of clearances investigated. 2. Apparatus . Two apparatuses, Nos. I and II, were used, each consisting in principle of a brass cylinder mounted on a shaft and capable of rotating inside a hollow cylinder, also of brass. The surfaces were finished as smooth as possible by grinding.


1958 ◽  
Vol 25 (1) ◽  
pp. 47-51
Author(s):  
R. M. Rosenberg

Abstract The system considered here is a massless, uniform elastic shaft carrying at its mid-point a disk (having mass) and supported at the ends by universal (Hooke) joints. The purpose of this investigation is to examine the effect of Hooke-joint angularity (as obtained by design, or from faulty alignment) on the bending stability of the rotating shaft. It is found that separate investigations are required for shafts not transmitting axial torques and for those required to transmit torques. Each gives rise to instabilities which are absent when the Hooke joint is straight. In the absence of axial torques, the shaft develops unsuspected mild critical speeds at odd integer submultiples of the “familiar” critical speed found with a straight Hooke joint. When the shaft is required to transmit moderate axial torques, the joint angularity produces true instabilities near all integer submultiples of the familiar critical speed. Surprisingly, these instabilities vanish for sufficiently large axial torques.


Author(s):  
Lawrence N. Virgin ◽  
Josiah D. Knight ◽  
Raymond H. Plaut

The prediction of critical speeds of a rotating shaft is a crucial issue in a variety of industrial applications ranging from turbomachinery to disk storage systems. The modeling and analysis of rotordynamic systems is subject to a number of complications, but perhaps the most important characteristic is to pass through a critical speed under spin-up conditions. This is associated with classical resonance phenomena and high amplitudes, and is often a highly undesirable situation. However, given uncertainties in the modeling of such systems, it can be very difficult to predict critical speeds based on purely theoretical considerations. Thus, it is clearly useful to gain knowledge of the critical speeds of rotordynamic systems under in situ conditions. The present study describes a relatively simple method to predict the first critical speed using data from low rotational speeds. The method is shown to work well for two standard rotordynamic models, and with data from experiments conducted during this study.


1963 ◽  
Vol 30 (3) ◽  
pp. 463-464
Author(s):  
Samuel Levy

It is shown that a damper applied to the spherical bearing at the ends of a rotating shaft to damp pitch and yaw motions of the journal bearing can markedly reduce the deflection caused by unbalance near critical speeds. Equations are given for optimizing the damping and for computing the damping moment which must be carried by the journal bearing. It is shown that with optimum damping of a centrally loaded uniform shaft, the load carried by the journal bearing in the critical-speed range is no more than 67 percent greater than it would have been for a rigid shaft. The corresponding moment carried by the journal bearing is less than the amount which would develop at the mid-length of the shaft in the absence of elastic deflections.


1984 ◽  
Vol 12 (1) ◽  
pp. 44-63 ◽  
Author(s):  
Y. D. Kwon ◽  
D. C. Prevorsek

Abstract Radial tires for automobiles were subjected to high speed rolling under load on a testing wheel to determine the critical speeds at which standing waves started to form. Tires of different makes had significantly different critical speeds. The damping coefficient and mass per unit length of the tire wall were measured and a correlation between these properties and the observed critical speed of standing wave formation was sought through use of a circular membrane model. As expected from the model, desirably high critical speed calls for a high damping coefficient and a low mass per unit length of the tire wall. The damping coefficient is particularly important. Surprisingly, those tire walls that were reinforced with steel cord had higher damping coefficients than did those reinforced with polymeric cord. Although the individual steel filaments are elastic, the interfilament friction is higher in the steel cords than in the polymeric cords. A steel-reinforced tire wall also has a higher density per unit length. The damping coefficient is directly related to the mechanical loss in cyclic deformation and, hence, to the rolling resistance of a tire. The study shows that, in principle, it is more difficult to design a tire that is both fuel-efficient and free from standing waves when steel cord is used than when polymeric cords are used.


1976 ◽  
Vol 75 (1) ◽  
pp. 1-15 ◽  
Author(s):  
J. A. Cole

Critical speeds for the onset of Taylor vortices and for the later development of wavy vortices have been determined from torque measurements and visual observations on concentric cylinders of radius ratios R1/R2 = 0·894–0·954 for a range of values of the clearance c and length L: c/R1 = 0·0478–0·119 and L/c = 1–107. Effectively zero variation of the Taylor critical speed with annulus length was observed. The speed at the onset of wavy vortices was found to increase considerably as the annulus length was reduced and theoretical predictions are realistic only for L/c values exceeding say 40. The results were similar for all four clearance ratios examined. Preliminary measurements on eccentrically positioned cylinders with c/R1 = 0·119 showed corresponding effects.


1971 ◽  
Vol 8 (03) ◽  
pp. 327-333
Author(s):  
R. H. Salzman

This paper presents a semi-graphical approach for finding the first critical speed of a stepped shaft with finite bearing stiffness. The method is particularly applicable to high-speed turbine rotors with journal bearings. Using Rayleigh's Method and the exact solution for whirling of a uniform shaft with variable support stiffness, estimates of the lowest critical speed are easily obtained which are useful in the design stage. First critical speeds determined by this method show good agreement with values computed by the Prohl Method for the normal range of bearing stiffness. A criterion is also established for determining if the criticals are "bearing critical speeds" or "bending critical speeds," which is of importance in design. Discusser E. G. Baker


Sign in / Sign up

Export Citation Format

Share Document