The Fracture Toughness of Cast High-Strength Steels

1977 ◽  
Vol 99 (1) ◽  
pp. 70-75 ◽  
Author(s):  
S. Floreen

The mechanical properties of four cast high-strength steels, 4340, 15-5 PII stainless steel, and two maraging steels were examined. To provide a direct comparison with wrought steels split heats were prepared in which part of each heat was sand cast and the balance was forged and hot-rolled to plate. The KIc properties of the castings were comparable to the plate properties. Limited tests indicated that the cast steels also had reasonably good fatigue and stress corrosion cracking resistance. The castings showed surprisingly low Charpy values, which was attributed to notch acuity due to the more heterogeneous nature of the fractures in the cast structures. The overall results suggest that cast high-strength steels had satisfactory toughness and could be used in many applications.

2010 ◽  
Vol 654-656 ◽  
pp. 82-85 ◽  
Author(s):  
Shu Zhou ◽  
Ying Wang ◽  
Nai Lu Chen ◽  
Yong Hua Rong ◽  
Jian Feng Gu

The quenching-partitioning-tempering (Q-P-T) process, based on the quenching and partitioning (Q&P) treatment, has been proposed for producing high strength steels containing significant fraction of film-like retained austenite and controlled amount of fine martensite laths. In this study, a set of Q-P-T processes for C-Mn-Si-Ni-Nb hot rolled plates are designed and realized. The steels with Q-P-T processes present a combination of high strength and relatively good ductility. The origin of such mechanical properties is revealed by microstructure characterization.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1584
Author(s):  
Alexander Zaitsev ◽  
Nataliya Arutyunyan

Low-carbon Ti-Mo microalloyed steels represent a new generation of high strength steels for automobile sheet. Excellent indicators of difficult-to-combine technological, strength, and other service properties are achieved due to the superposition of a dispersed ferrite matrix and a bulk system of nanoscale carbide precipitates. Recently, developments are underway to optimize thermo-deformation processing for the most efficient use of phase precipitates. The review summarizes and analyzes the results of studies of mechanical properties depending on the chemical composition and parameters of hot deformation of low-carbon Ti-Mo microalloyed steels. Particular attention is paid to the features of the formation and the influence of various types of phase precipitates and the dispersion of the microstructure on mechanical properties. The advantages of Ti-Mo microalloying system and the tasks requiring further solution are shown.


2008 ◽  
Vol 587-588 ◽  
pp. 941-945 ◽  
Author(s):  
M. Durães ◽  
Nuno Peixinho

This work presents results of tensile testing of H400 stainless steel, DP600 and TRIP600 at different strain rates. Mechanical properties were determined from tensile test using flat sheet specimens and recurring to different test techniques: servo-hydraulic machine and a tensile-loading Hopkinson bar. The test results were used to compare different mechanical properties of the tested steels and to validate constitutive equations intended to provide a mathematical description of strain rate dependence, namely the Cowper-Symonds equation. Following previous research work in dynamic material proprieties of multiphase and stainless steel grades, the energy absorption in quasi-static crushing of thin walled section made of the tested materials was subsequently investigated. Crush tests were performed in top-hat and hexagonal section tubes manufactured using laser welding. The experimental results were compared in order to assess the efficiency of the different steel grades for energy absorption.


2012 ◽  
Vol 1373 ◽  
Author(s):  
I. Mejía ◽  
A. García de la Rosa ◽  
A. Bedolla-Jacuinde ◽  
J.M. Cabrera

ABSTRACTThe aim of this research work is to study the effect of boron addition on mechanical properties and microstructure of a new family of low carbon NiCrVCu advanced high strength steels (AHSS). Experimental steels are thermo-mechanically processed (TMP) (hot-rolled+quenched). Results show that the microstructure of these steels contains bainite and martensite, predominantly, which nucleate along prior austenite grain boundaries (GB). On the other hand, tensile tests reveal that the TMP steels have YS (0.2% offset) of 978 MPa, UTS of 1140 MPa and EL of 18%. On the basis of exhibited microstructure and mechanical properties, these experimental steels are classified as bainitic-martensitic complex phase (CP) advanced ultra-high strength steels (UHSS).


Alloy Digest ◽  
1986 ◽  
Vol 35 (11) ◽  

Abstract CARPENTER PH 13-8 Mo is a martensitic precipitation-hardening stainless steel. It has high strength and hardness combined with good ductility and toughness in large sections. Compared to other ferrous alloys this material offers a high level of useful mechanical properties under severe environmental conditions. It is highly resistant to general corrosion and to stress-corrosion cracking. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-477. Producer or source: Carpenter.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1961 ◽  
Vol 10 (12) ◽  

Abstract Armco 21-6-9 is an austenitic stainless steel alloy designed for use in applications where a combination of high strength and corrosion resistance is desired. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-125. Producer or source: Armco Inc., Eastern Steel Division.


Alloy Digest ◽  
2017 ◽  
Vol 66 (7) ◽  

Abstract Strenx Section 900 is a cold-formed steel section made of hot-rolled, high-strength steel with a minimum yield strength of 900 MPa (131 ksi). Its high strength combined with naturally stiff form enables construction of stronger and lighter structures. The common shape is a U-bend channel. This datasheet provides information on composition, physical properties, tensile properties, and bend strength as well as fracture toughness. It also includes information on forming, machining, and joining. Filing Code: SA-792. Producer or source: SSAB Swedish Steel Inc..


Alloy Digest ◽  
1977 ◽  
Vol 26 (4) ◽  

Abstract YS-T 50 to YS-T 140 Steels comprise a series of high-strength, cold-rolled steels designed to meet performance and weight-saving objectives. They are an extension of Youngstown's series of hot-rolled high-strength steels (see Youngstown YS-T Steel, Alloy Digest SA-261, March 1971). The YS-T 50 to YS-T 140 steels have minimum yield strengths ranging from 50,000 psi to 140,000 psi. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on heat treating, machining, and joining. Filing Code: SA-331. Producer or source: Youngstown Sheet and Tube Company.


Sign in / Sign up

Export Citation Format

Share Document