Effect of Wetting on Friction Factors for Turbulent Flow of Mercury in Annuli

1976 ◽  
Vol 98 (1) ◽  
pp. 113-116 ◽  
Author(s):  
O. E. Dwyer ◽  
P. J. Hlavac ◽  
B. G. Nimmo

Friction factors were determined for fully developed turbulent flow of mercury in smooth concentric annuli under conditions where either both walls were unwetted, or both were wetted, or the inner wall was wetted and the outer one unwetted. Three radius ratios (r2/r1) were used, i.e., 2.09, 2.78, and 4.00. Unwetted walls gave the lowest friction factors, which were practically independent of the r2/r1 ratio over the limited range tested. The factors were 10 ± 1 percent higher than the commonly accepted values for smooth pipes (at the same Reynolds number). The highest friction factors were obtained with the inner wall wetted and the outer wall unwetted, and the greater the r2/r1 ratio the greater was the effect. For example, at r2/r1 = 4.00, the friction factors were 9.9% greater than for the situation when both walls were unwetted. The wetting conditions affected the location of the radius of maximum velocity (rm); and it was found that the nearer rm approached r2, the higher was the friction factor.

2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


1974 ◽  
Vol 64 (2) ◽  
pp. 263-288 ◽  
Author(s):  
K. Rehme

Fully developed turbulent flow through three concentric annuli was investigated experimentally for a Reynolds-number rangeRe= 2 × 104−2 × 105. Measurements were made of the pressure drop, the positions of zero shear stress and maximum velocity, and the velocity distribution in annuli of radius ratios α = 0.02, 0.04 and 0.1, respectively. The results for the key problem in the flow through annuli, the position of zero shear stress, showed that this position is not coincident with the position of maximum velocity. Furthermore, the investigation showed the strong influence of spacers on the velocity and shear-stress distributions. The numerous theoretical and experimental results in the literature which are based on the coincidence of the positions of zero shear stress and maximum velocity are not in agreement with reality.


Author(s):  
Marco Lorenzini ◽  
Gian Luca Morini ◽  
Sandro Salvigni

Theoretical and experimental works on microscale transport phenomena have been carried out in the past decade in the attempt to analyse possible new effects and to assess the influence of scaling on the classical correlations which are used in macro-scale heat and fluid flow, following the need to supply engineers with reliable correlations to be used in the design of micro-scale devices. These results were sometimes in mutual contrast, as is the case for the determination of the friction factor, which has been found to be lower, higher or comparable to that for macroscopic channels, depending on the researchers. In this work the compressible flow of nitrogen inside circular microchannels from 26 μm to 508 μm in diameter and with different surface roughness (<1%) is investigated for the whole range of flow conditions: laminar, transitional and turbulence. Over 5000 experimental data have been collected and analysed. The data confirmed that in the laminar regime the agreement with the conventional theory is very good in terms of friction factors both for rough and smooth microtubes. For the smaller microchannels (<100 μm) when Re is greater than 1300 the friction factor tends to deviate from the Poiseuille law because the flow acceleration due to compressibility effect gains in importance. The transitional regime was found to start no earlier than at values of the Reynolds number around 1800–2000. Both smooth and sudden changes in the flow regime have been found, as reported for conventional tubes. Fully developed turbulent flow was attained with both smooth and rough tubes, and the results for smooth tubes seem to confirm Blasius’s relation, while for rough tubes the Colebrook’s correlation is found to be only partially in agreement with the experimental friction factors. In the turbulent regime the dependence of the friction factor on the Reynolds number is less pronounced for microtubes with respect to the prediction of the Colebrook’s correlation and the friction factor tends only to depend on the microtube relative roughness.


1968 ◽  
Vol 90 (1) ◽  
pp. 43-50 ◽  
Author(s):  
N. W. Wilson ◽  
J. O. Medwell

The heat and momentum transfer analogy is employed to analyze the heat transfer phenomena for turbulent flow in concentric annuli. A modification of the velocity distribution due to Van Driest is assumed and equations in dimensionless form are developed to predict: (a) the position of maximum velocity in the annulus; (b) the friction factor-Reynolds number relationship, and (c) temperature distributions and heat transfer relations over a wide range of Reynolds number and Prandtl modulus.


1994 ◽  
Vol 116 (4) ◽  
pp. 677-684 ◽  
Author(s):  
M. D. Su ◽  
R. Friedrich

Large eddy simulations have been performed in straight ducts with square cross section at a global Reynolds number of 49,000 in order to predict the complicated mean and instantaneous flow involving turbulence-driven secondary motion. Isotropic grid systems were used with spatial resolutions of 256 * 642. The secondary flow not only turned out to develop extremely slowly from its initial conditions but also to require fairly high resolution. The obtained statistical results are compared with measurements. These results show that the large eddy simulation (LES) is a powerful approach to simulate the complex turbulence flow with high Reynolds number. Streaklines of fluid particles in the duct show the secondary flow clearly. The database obtained with LES is used to examine a statistical turbulence model and describe the turbulent vortex structure in the fully developed turbulent flow in a straight duct.


1967 ◽  
Vol 71 (673) ◽  
pp. 47-49 ◽  
Author(s):  
Alan Quarmby

Experimental results are presented of the measurement of skin friction in fully developed turbulent flow in concentric annuli using Preston tubes situated on the inner and outer annular surfaces. Both Preston's calibration and Patel's calibration were used to evaluate the results. It was found that the latter gave excellent results. Several radius ratios were investigated with a reasonable range of the annulus Reynolds number. The good agreement was not affected by radius ratio or smallness of core tube within the range of these parameters investigated here.


1996 ◽  
Vol 118 (2) ◽  
pp. 255-259 ◽  
Author(s):  
Hanzhong Zhang ◽  
Mohammad Faghri ◽  
Frank M. White

A new low-Reynolds-number k-ε model is proposed to simulate turbulent flow over smooth and rough surfaces by including the equivalent sand-grain roughness height into the model functions. The simulation of various flow experiments shows that the model can predict the log-law velocity profile and other properties such as friction factors, turbulent kinetic energy and dissipation rate for both smooth and rough surfaces.


Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Hiroki Takahashi ◽  
Yoshiaki Ohno

The friction characteristics of water in a sub-millimeter scale channel were investigated experimentally. The friction factors and the critical Reynolds number were measured using water flow through circular tubes with diameters of 0.5, 0.25 and 0.17 mm. The experimental results show that the measured friction factor for water agreed well with the conventional Poiseuille (λ = 64/Re) and Blasius (λ = 0.316 Re−0.25) equations in laminar and turbulent flow regime; the laminar-turbulent transition Reynolds number was approximately 2300 for diameter 0.5 mm. For diameter 0.25 mm, the friction factor evaluated by the form pressure drop also agreed well with the Poiseuille equation. For diameter 0.17 mm, the measured total friction factor was close to the Poiseuille prediction.


1974 ◽  
Vol 65 (4) ◽  
pp. 735-751 ◽  
Author(s):  
Paul N. Blumberg ◽  
Rane L. Curl

Periodic dissolution patterns that result from the interaction of a soluble surface and an adjacent turbulent flow have been investigated experimentally and theoretically. They occur at a Reynolds number based on a characteristic wavelength and friction velocity of about 2200. Experimental results for the stable geometry, propagation, mass-transfer distribution, average mass-transfer correlation and friction factor are presented. An interpretation based upon the repetitive transitional nature of the flow structure is advanced to explain aspects of the origin and behaviour of this type of roughness.


Sign in / Sign up

Export Citation Format

Share Document